XC164-16 N
16-Bit Single-Chip Microcontrolle
with C166SV2 Core
Volume 1 (of 2): System Uni

. |
« i

Microcontrollers

—

. L]
(Infineon
technologies

Never stop thinking.

Edition 2004-03

Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
81669 Miinchen, Germany

© Infineon Technologies AG 2004.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of
characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding
circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.

XC164-16

16-Bit Single-Chip Microcontroller
with C166SV2 Core

Volume 1 (of 2): System Units

|

Infineon
g

technologies

thinking.

XC164 Volume 1 (of 2): System Units

Revision History: V2.1, 2004-03

Previous Version: V2.0, 2003-12 (Pre-Release)
V1.1, 2002-02 (Draft Manual)
V1.0, 2001-04 (Draft Manual)

Page Subjects (major changes since last revision)

all The layout of several graphics and text structures has been adapted to
company documentation rules, obvious typographical errors have been
corrected.

2-14 Number of 10 lines corrected

2-31 OCDS pin assignment corrected

3-8 Size of DSRAM corrected

6-18, 7-10 Note on PORTO pull-ups added

6-25 Formula for RSTLEN corrected

6-42 Note added to RTC reset

6-48 Layout of register OPSEN corrected

6-53 Section “Power Management” added

7-34 Debug output lines added

7-43 References to register ALTSEL1P4 removed

Controller Area Network (CAN): License of Robert Bosch GmbH

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:

mcdocu.comments @infineon.com

Template: mc_tmplt_a5.fm / 3/ 2003-09-01

—

Infine on XC1 64-'1 6 Derivatives
lechnologies System Units (Vol. 1 of 2)
Table of Contents Page

This User’'s Manual consists of two Volumes, “System Units” and “Peripheral Units”. For
your convenience this table of contents (and also the keyword index) lists both volumes,
so you can immediately find the reference to the desired section in the corresponding
document ([1] or [2]).

1 Introduction 1-1[1]
1.1 Members of the 16-bit Microcontroller Family 1-3 [1]
1.2 Summary of BasicFeatures, 1-5[1]
1.3 Abbreviations 1-9 [1]
1.4 Naming Conventions 1-10 [1]
2 Architectural Overview 2-1[1]
2.1 Basic CPU Concepts and Optimizations 2-2 [1]
2.1.1 High Instruction Bandwidth / Fast Execution 2-4 [1]
2.1.2 Powerful ExecutionUnits 2-5[1]
2.1.3 High Performance Branch-, Call-, and Loop-Processing 2-6 [1]
21.4 Consistent and Optimized Instruction Formats 2-7 [1]
215 Programmable Multiple Priority Interrupt System 2-8 [1]
2.1.6 Interfaces to System Resources 2-9 [1]
2.2 On-Chip System Resources 2-10 [1]
2.3 On-Chip Peripheral Blocks 2-14 [1]
2.4 Clock Generation i e e e 2-29 [1]
25 Power Management Features 2-29 [1]
2.6 On-Chip Debug Support (OCDS) 2-31[1]
2.7 ProtectedBits 2-32 [1]
3 Memory Organization 3-1[1]
3.1 Address Mapping 3-3 [1]
3.2 Special Function Register Areas 3-4 [1]
3.3 DataMemory Areas e 3-8 [1]
3.4 Program Memory Areas 3-10 [1]
3.5 System Stack 3-12 [1]
3.6 IO ArEaS . . i e 3-13 [1]
3.7 External Memory Space 3-14 [1]
3.8 Crossing Memory Boundaries 3-15[1]
3.9 The On-Chip Program Flash Module 3-16 [1]
3.9.1 Flash OperatingModes 3-18 [1]
3.9.2 Command SEQUENCESot 3-19 [1]
3.9.3 Error Correction and Data Integrity 3-25 [1]
3.94 Protection and Security Features 3-27 [1]
3.9.5 Flash Status Information, 3-32 [1]
3.9.6 Operation Control and ErrorHandling 3-35[1]

User’'s Manual I-1 V2.1, 2004-03

—

Infineon XC1 64-'16 Derivatives

lechnologies System Units (Vol. 1 of 2)
Table of Contents Page
3.10 The On-Chip Program Mask ROM 3-37 [1]
3.10.1 Protection and Security Features 3-37 [1]
3.10.2 Command Sequences i 3-39 [1]
3.11 Program Memory Control i 3-40 [1]
3.111 Address Map 3-41 [1]
3.11.2 Flash Memory ACCESSot e 3-42 [1]
3.11.3 User ROM ACCESS ittt e e 3-44 [1]
3.11.4 IMB Control Functions 3-45 [1]
4 Central Processing Unit (CPU) 4-1[1]
4.1 Componentsofthe CPU 4-4 [1]
4.2 Instruction Fetch and Program Flow Control 4-5[1]
4.2 1 Branch Detection and Branch PredictionRules 4-7 [1]
422 Correctly Predicted Instruction Flow 4-7 [1]
4.2.3 Incorrectly Predicted Instruction Flow 4-9 [1]
4.3 Instruction Processing Pipeline 4-11 [1]
4.3.1 Pipeline Conflicts Using General Purpose Registers 4-13 [1]
4.3.2 Pipeline Conflicts Using Indirect Addressing Modes 4-15 [1]
4.3.3 Pipeline Conflicts Due to Memory Bandwidth 4-17 [1]
434 Pipeline Conflicts Caused by CPU-SFR Updates 4-20 [1]
4.4 CPU Configuration Registers 4-26 [1]
4.5 Use of General Purpose Registers 4-29 [1]
4.5.1 GPR AddressingModes 4-31 [1]
452 Context Switching 4-33 [1]
4.6 Code AdAressingo 4-37 [1]
4.7 Data Addressing 4-39 [1]
4.7 .1 Short AddressingModes i 4-39 [1]
4.7.2 Long AddressingModes 4-41 [1]
4.7.3 Indirect AddressingModes 4-45 [1]
4.7.4 DSP AddressingModes 4-47 [1]
4.7.5 The System Stack 4-53 [1]
4.8 Standard Data Processing 4-57 [1]
4.8.1 16-bit Adder/Subtracter, Barrel Shifter, and 16-bit Logic Unit 4-61 [1]
4.8.2 Bit ManipulationUnit 4-61 [1]
4.8.3 Multiply and Divide Unit 4-63 [1]
4.9 DSP Data Processing (MAC Unit) 4-65 [1]
4.9.1 Representation of Numbers and Rounding 4-66 [1]
4.9.2 The 16-bit by 16-bit Signed/Unsigned Multiplier and Scaler 4-67 [1]
4.9.3 Concatenation Unit 4-67 [1]
4.9.4 One-bitScaler 4-67 [1]
4.9.5 The 40-bit Adder/Subtracter 4-67 [1]
4.9.6 The Data Limiter 4-68 [1]
4.9.7 The Accumulator Shifter 4-68 [1]

User’'s Manual |-2 V2.1, 2004-03

—

Infineon XC164-16 Derivatives

lechnologies System Units (Vol. 1 of 2)
Table of Contents Page
4.9.8 The 40-bit Signed Accumulator Register 4-69 [1]
49.9 The MAC Unit Status Word MSW 4-70 [1]
4.9.10 The Repeat Counter MRW 4-72 [1]
4.10 Constant Registers 4-74 [1]
5 Interrupt and Trap Functions 5-1[1]
5.1 Interrupt System Structure 5-2 [1]
5.2 Interrupt Arbitration and Control 5-4 [1]
5.3 Interrupt Vector Table 5-10 [1]
5.4 Operation of the Peripheral Event Controller Channels 5-18 [1]
5.4.1 The PEC Source and Destination Pointers 5-22 [1]
5.4.2 PEC Transfer Control 5-24 [1]
5.4.3 Channel Link Mode for Data Chaining 5-26 [1]
544 PEC Interrupt Control 5-27 [1]
55 Prioritization of Interrupt and PEC Service Requests 5-29 [1]
5.6 Context Switching and Saving Status 5-31 [1]
5.7 Interrupt Node Sharing 5-34 [1]
5.8 External Interrupts 5-35 [1]
5.9 OCDS Requests ... e e 5-40 [1]
5.10 Service Request Latencyo 5-41 [1]
5.11 Trap Functions 5-43 [1]
6 General System Control Functions 6-1[1]
6.1 System Reset 6-2 [1]
6.1.1 Reset SourcesandPhases 6-3 [1]
6.1.2 Status AfterReset 6-6 [1]
6.1.3 Application-Specific Initialization Routine 6-11 [1]
6.1.4 System Startup Configuration 6-14 [1]
6.1.5 Hardware Configuration in External Start Mode 6-18 [1]
6.1.6 Default Configuration in Single-Chip Mode 6-23 [1]
6.1.7 Reset BehaviorControl 6-24 [1]
6.2 Clock Generation i e e 6-26 [1]
6.2.1 Oscillator 6-27 [1]
6.2.2 Clock Generation and Frequency Control 6-29 [1]
6.2.3 Clock Distribution 6-36 [1]
6.2.4 OscillatorWatchdogo 6-37 [1]
6.2.5 Interrupt Generation 6-37 [1]
6.2.6 Generation of an External Clock Signal 6-38 [1]
6.3 Central System Control Functions 6-42 [1]
6.3.1 Status Indication 6-44 [1]
6.3.2 Reset Source Indication 6-45 [1]
6.3.3 Peripheral Shutdown Handshake 6-46 [1]
6.3.4 Debug System Control 6-47 [1]

User’s Manual -3 V2.1, 2004-03

—

Infineon XC164-16 Derivatives

lechnologies System Units (Vol. 1 of 2)
Table of Contents Page
6.3.5 Register Security Mechanism 6-49 [1]
6.4 Power Management 6-53 [1]
6.4.1 Power ReductionModes 6-53 [1]
6.4.2 Reduction of Clock Frequencies 6-56 [1]
6.4.3 Flexible Peripheral Management 6-56 [1]
6.5 Watchdog Timer (WDT) e 6-58 [1]
6.6 Identification Control Block 6-63 [1]
7 Parallel Ports 7-1[1]
7.1 Input Threshold Control 7-2 [1]
7.2 Output Driver Control 7-3 [1]
7.3 Alternate Port Functions 7-8 [1]
7.4 PORTO ... 7-9 [1]
7.5 PORT T .. e 7-13 [1]
7.6 POt 3 . 7-25 [1]
7.7 Port 4 . e 7-38 [1]
7.8 POt S 7-47 [1]
7.9 Port O . 7-51 [1]
7.10 Port 20 . .. 7-60 [1]
8 Dedicated Pins 8-1[1]
9 The External Bus ControllerEBC 9-1[1]
9.1 External Bus Signals 9-3 [1]
9.2 Timing Principles 9-4 [1]
9.2.1 Basic Bus Cycle Protocols 9-4 [1]
9.2.1.1 Demultiplexed Bus 9-5[1]
9.2.1.2 Multiplexed Bus 9-6 [1]
9.2.2 BusCyclePhases i 9-7 [1]
9.2.2.1 APhase-CS ChangePhaseccouuiuununn.. 9-7 [1]
9.2.2.2 B Phase - Address Setup/ALEPhase 9-7 [1]
9.2.2.3 CPhase-DelayPhase 9-7 [1]
9.224 D Phase - Write Data Setup/MUX Tristate Phase 9-7 [1]
9.2.2.5 E Phase - RD/WR Command Phase 9-7 [1]
9.2.2.6 F Phase - Address/Write Data Hold Phase 9-8 [1]
9.2.3 Bus Cycle Examples: Fastest AccessCycles 9-8 [1]
9.3 Functional Description 9-10 [1]
9.3.1 Configuration Register Overview 9-10 [1]
9.3.2 The EBC Mode RegisterO 9-12 [1]
9.3.3 The EBC Mode Register1 9-14 [1]
9.34 The Timing Configuration Registers TCONCSx 9-15 [1]
9.3.5 The Function Configuration Registers FCONCSx 9-16 [1]
9.3.6 The Address Window Selection Registers ADDRSELX 9-18 [1]
9.3.6.1 Definition of Address Areas 9-18 [1]

User’'s Manual -4 V2.1, 2004-03

—

Infineon XC164-16 Derivatives

lechnologies System Units (Vol. 1 of 2)
Table of Contents Page
9.3.6.2 Address Window Arbitration 9-20 [1]
9.3.7 Access Control to TWinCAN 9-21 [1]
9.3.8 Shutdown Control 9-22 [1]
9.4 LXBus Access Control and Signal Generation 9-23 [1]
9.5 EBCRegisterTable 9-23 [1]
10 The Bootstrap Loader 10-1 [1]
10.1 Entering the Bootstrap Loader 10-2 [1]
10.2 Loadingthe Startup Code 10-4 [1]
10.3 Exiting Bootstrap LoaderMode 10-4 [1]
10.4 Choosing the Baudrate forthe BSL 10-5 [1]
11 Debug System 11-1 [1]
11.1 Introduction 11-1[1]
11.2 Debuglinterface 11-2 [1]
11.3 OCDS Module e 11-3 [1]
11.3.1 Debug Events 11-5[1]
11.3.2 Debug Actions 11-6 [1]
11.4 Cerberus 11-7 [1]
11.4.1 Functional Overview iiiinin.. 11-7 [1]
11.5 Emulation Device 11-9 [1]
12 Instruction Set Summaryl 12-1 [1]
13 Device Specification L. 13-1 [1]
14 The General Purpose Timer Units 14-1 [2]
14.1 TimerBlock GPT1 14-2 [2]
14.1.1 GPT1 Core Timer T3 Control 14-4 [2]
14.1.2 GPT1 Core Timer T3 OperatingModes 14-8 [2]
14.1.3 GPT1 Auxiliary Timers T2/T4 Control 14-15 [2]
14.1.4 GPT1 Auxiliary Timers T2/T4 Operating Modes 14-18 [2]
14.1.5 GPT1 Clock Signal Control 14-27 [2]
14.1.6 GPT1 Timer Registers 14-29 [2]
14.1.7 Interrupt Control for GPT1 Timers 14-30 [2]
14.2 Timer Block GPT2 e 14-31 [2]
14.2.1 GPT2 Core Timer T6 Control 14-33 [2]
14.2.2 GPT2 Core Timer T6 OperatingModes 14-37 [2]
14.2.3 GPT2 Auxiliary Timer T5 Control 14-40 [2]
14.2.4 GPT2 Auxiliary Timer T5 OperatingModes 14-42 [2]
14.2.5 GPT2 Register CAPREL OperatingModes 14-46 [2]
14.2.6 GPT2 Clock Signal Control 14-51 [2]
14.2.7 GPT2 Timer Regqisters 14-54 2]
14.2.8 Interrupt Control for GPT2 Timers and CAPREL 14-55 [2]

User’s Manual -5 V2.1, 2004-03

—

Infi XC164-16 Derivatives

fnhm‘eon Syst Units (Vol. 1 of 2

cchnologies ystem Units (Vol. 1 of 2)
Table of Contents Page
14.3 Interfaces of the GPT Module 14-56 [2]
15 Real TimeClock 15-1 [2]
15.1 Definingthe RTC TimeBase, .. 15-2 [2]
15.2 RTCRun Control i 15-5 [2]
15.3 RTC OperatingModes 15-7 [2]
15.3.1 48-bit TimerOperation 15-10 [2]
15.3.2 System Clock Operation 15-10 [2]
15.3.3 Cyclic Interrupt Generation 15-11 [2]
15.4 RTC Interrupt Generation 15-12 [2]
16 The Analog/Digital Converter 16-1 [2]
16.1 Mode Selection 16-3 [2]
16.1.1 Compatibility Mode 16-3 [2]
16.1.2 Enhanced Mode 16-5 [2]
16.2 ADC Operation e 16-8 [2]
16.2.1 Fixed Channel ConversionModes 16-11 [2]
16.2.2 Auto Scan ConversionModes, 16-12 [2]
16.2.3 WaitforReadMode i 16-13 [2]
16.2.4 Channel InjectionMode 16-14 [2]
16.3 Automatic Calibration 16-17 [2]
16.4 Conversion Timing Control 16-18 [2]
16.5 A/D Converter Interrupt Control 16-21 [2]
16.6 Interfaces of the ADCModule 16-22 [2]
17 Capture/Compare Units 17-1[2]
17.1 The CAPCOM TIMErs 17-4 [2]
17.2 CAPCOM Timer Interruptso e 17-9 [2]
17.3 Capture/Compare Channels 17-10 [2]
17.4 Capture Mode Operation 17-13 [2]
17.5 Compare Mode Operation 17-14 2]
17.5.1 CompareMode O e 17-15 [2]
17.5.2 Compare Mode 1 i e 17-15 [2]
17.5.3 Compare Mode 2 i 17-18 [2]
17.5.4 Compare Mode 3 17-18 [2]
17.5.5 Double-Register Compare Mode 17-22 [2]
17.6 Compare Output Signal Generation 17-25 [2]
17.7 Single Event Operation 17-27 [2]
17.8 Staggered and Non-Staggered Operation 17-29 [2]
17.9 CAPCOMINterrupts e 17-34 2]
17.10 External Input Signal Requirements 17-36 [2]
17.11 Interfaces of the CAPCOM Units 17-37 [2]
18 Capture/Compare Unit 6 (CAPCOM6) 18-1 [2]

User’s Manual -6 V2.1, 2004-03

—

Infineon XC164-16 Derivatives

technologics System Units (Vol. 1 of 2)
Table of Contents Page
18.1 Timer T12BIlock 18-4 [2]
18.1.1 Timer T12 Operation 18-7 [2]
18.1.2 T12Compare Modes 18-12 [2]
18.1.3 Dead-Time Generation 18-21 [2]
18.1.4 T12Capture Modes 18-24 [2]
18.1.5 Hysteresis-Like ControlMode 18-28 [2]
18.2 Timer T13Block 18-29 2]
18.2.1 TI183 Operation 18-32 [2]
18.2.2 T13Compare Modes i, 18-37 [2]
18.3 TimerBlock Control 18-41 [2]
18.4 Multi-ChannelMode 18-47 [2]
18.5 Hall SensorMode 18-50 [2]
18.5.1 Hall Pattern Compare LogiC i, 18-51 [2]
18.5.2 Sampling of the Hall Pattern 18-52 [2]
18.5.3 Brushless DC-Motor Control with Timer T12Block 18-53 [2]
18.5.4 HallMode Flagso i e 18-55 [2]
18.6 TrapHandling 18-61 [2]
18.7 Output Modulation Control 18-65 [2]
18.8 Shadow Register Transfer Control 18-69 [2]
18.9 Interrupt Generation 18-71 [2]
18.10 SuspendMode 18-80 [2]
18.11 Interfaces of the CAPCOMG Unit 18-81 [2]
19 Asynchronous/Synchronous Serial Interface (ASC) 19-1 [2]
19.1 Operational Overview i i 19-3 [2]
19.2 Asynchronous Operation, 19-5 [2]
19.2.1 Asynchronous Data Frames 19-6 [2]
19.2.2 Asynchronous Transmissioncciuiuennn.. 19-9 [2]
19.2.3 Transmit FIFO Operation 19-9 [2]
19.2.4 Asynchronous Reception 19-12 [2]
19.2.5 Receive FIFO Operation 19-12 [2]
19.2.6 FIFO TransparentMode, 19-15 [2]
19.2.7 IIDAMOdE e 19-16 [2]
19.2.8 RxD/TxD Data Path Selection in Asynchronous Modes 19-17 [2]
19.3 Synchronous Operation 19-19 [2]
19.3.1 Synchronous Transmission 19-20 [2]
19.3.2 Synchronous Reception 19-20 [2]
19.3.3 Synchronous Timing 19-20 [2]
19.4 Baudrate Generation 19-22 [2]
19.4.1 Baudrate in AsynchronousMode 19-22 2]
19.4.2 Baudrate in SynchronousMode 19-26 [2]
19.5 Autobaud Detection 19-27 [2]
19.5.1 General Operation 19-27 [2]

User’'s Manual -7 V2.1, 2004-03

—

XC164-16 Derivatives
System Units (Vol. 1 of 2)

Infineon
technologies

—
Table of Contents
19.5.2 Serial Frames for Autobaud Detection
19.5.3 Baudrate Selection and Calculation
19.5.4 Overwriting Registers on Successful Autobaud Detection
19.6 Hardware Error Detection Capabilities

19.7 Interrupts
19.8 Registers
19.9 Interfaces of the ASC Modules

20 High-Speed Synchronous Serial Interface (SSC)

20.1 Introduction
20.2 Operational Overview
20.21 Operating Mode Selection
20.2.2 Full-Duplex Operation
20.2.3 Half-Duplex Operation
20.2.4 Continuous Transfers
20.2.5 Baudrate Generation
20.2.6 Error Detection Mechanisms
20.2.7 SSC Register Summary
20.2.8 Port Configuration Requirements
20.3 Interfaces of the SSC Modules
21 TwinCANModule
21.1 Kernel Description
21.11 Overview

21.1.2 TwinCAN Control Shell

21.1.2.1 Initialization Processing
21.1.2.2 Interrupt Request Compressor
21.1.2.3 Global Control and Status Logic
21.1.3 CAN Node Control Logic
21.1.3.1 OVeIVIEW
21.1.3.2 Timing Control Unit
21.1.3.3 Bitstream Processor,
21.1.34 Error Handling Logic
21.1.3.5 Node Interrupt Processing
21.1.3.6 Message Interrupt Processing
21.1.3.7 Interrupt Indication,
21.1.4 Message HandlingUnit
21.1.41 Arbitration and Acceptance Mask Register

21.1.4.2 Handling of Remote and Data Frames
21.1.4.3 Handling of Transmit Message Objects
21144 Handling of Receive Message Objects
21.1.4.5 Single Data TransferMode

21.1.5 CAN Message Object Buffer (FIFO)

User’s Manual

-8

Page

......... 19-28 [2]
......... 19-29 [2]
..... 19-33 [2]
......... 19-34 [2]
......... 19-35 [2]
......... 19-39 [2]
......... 19-56 [2]

............ 20-1 [2]
.......... 20-1 [2]
.......... 20-1 [2]
.......... 20-3 [2]
.......... 20-8 [2]
......... 20-11 [2]
......... 20-12 [2]
......... 20-12 [2]
......... 20-14 [2]
......... 20-16 [2]
......... 20-17 [2]
......... 20-18 [2]

.......... 21-1[2]
.......... 21-1[2]
.......... 21-1[2]
.......... 21-4 [2]
.......... 21-4 [2]
.......... 21-5 [2]

.......... 21-9 [2]
......... 21-11 [2]
......... 21-11 [2]
......... 21-12 [2]
......... 21-13[2]
......... 21-13[2]
......... 21-15[2]
......... 21-16 [2]
......... 21-17 [2]
......... 21-18 [2]
......... 21-21 [2]
......... 21-23 2]
......... 21-24 [2]

V2.1, 2004-03

—

Infi XC164-16 Derivatives
fnhm‘eon Syst Units (Vol. 1 of 2
cchnologies ystem Units (Vol. 1 of 2)
Table of Contents Page
21.1.51 Buffer Access by the CAN Controller 21-26 [2]
21.1.5.2 Buffer Accessbythe CPU 21-27 [2]
21.1.6 Gateway Message Handling 21-28 [2]
21.1.6.1 Normal Gateway Mode 21-29 [2]
21.1.6.2 Normal Gateway with FIFO Buffering 21-33 [2]
21.1.6.3 Shared GatewayMode 21-36 [2]
21.1.7 Programming the TWinCAN Module 21-40 [2]
21.1.71 Configuration of CANNode A/B 21-40 [2]
21.1.7.2 Initialization of Message Objects 21-40 [2]
21.1.7.3 Controlling a Message Transfer 21-41 2]
21.1.8 Loop-BackMode 21-44 [2]
21.1.9 Single Transmission Try Functionality 21-45 2]
21.1.10 Module Clock Requirements 21-46 [2]
21.2 TwinCAN Register Description 21-47 [2]
21.2.1 RegisterMap 21-47 [2]
21.2.2 CAN Node A/BRegisters 21-49 [2]
21.2.3 CAN Message Object Registers 21-64 [2]
21.2.4 Global CAN Control/Status Registers 21-80 [2]
21.3 XC164 Module Implementation Details 21-82 [2]
21.3.1 Interfaces of the TWinCAN Module 21-82 [2]
21.3.2 TwinCAN Module Related External Registers 21-83 [2]
21.3.21 SystemRegisters 21-84 2]
21.3.2.2 Port Registers 21-85 [2]
21.3.2.3 Interrupt Regqisters 21-89 [2]
21.3.3 RegisterTable 21-90 [2]
22 RegisterSet 22-1 2]
22.1 PD+BUS Peripherals 22-1 2]
22.2 LXBUS Peripherals i 22-15[2]
Keyword Index i i-1 [1+2]

User’s Manual 1-9 V2.1, 2004-03

—

!nfineqn . 3(0134-'16 [\),erliv1ati\;ezs
sennelostes o ystem Units (Vol. 1 of 2)
Introduction

1 Introduction

The rapidly growing area of embedded control applications is representing one of the
most time-critical operating environments for today’s microcontrollers. Complex control
algorithms have to be processed based on a large number of digital as well as analog
input signals, and the appropriate output signals must be generated within a defined
maximum response time. Embedded control applications also are often sensitive to
board space, power consumption, and overall system cost.

Embedded control applications therefore require microcontrollers, which:

» offer a high level of system integration

e eliminate the need for additional peripheral devices and the associated software
overhead

e provide system security and fail-safe mechanisms

e provide effective means to control (and reduce) the device’s power consumption

The increasing complexity of embedded control applications requires microcontrollers
for new high-end embedded control systems to possess a significant increase in CPU
performance and peripheral functionality over conventional 8-bit controllers. To achieve
this high performance goal Infineon has decided to develop its families of 16-bit CMOS
microcontrollers without the constraints of backward compatibility.

Nonetheless the architectures of the 16-bit microcontroller families pursue successful
hardware and software concepts, which have been established in Infineon’s popular
8-bit controller families.

User’s Manual 1-1 V2.1, 2004-03
Introduction_X41, V2.1

—

: XC164-16 Derivatives
!nfmegon/ System Units (Vol. 1 of 2)

Introduction

About this Manual

This manual describes the functionality of a number of 16-bit microcontrollers of the
Infineon XC166 Family.

These microcontrollers provide identical functionality to a large extent, but each device
type has specific unique features as indicated here.

The descriptions in this manual cover a superset of the provided features and refer to the
following derivatives:

e XC164CS-16F
— 128 Kbytes Program Flash, 6 Kbytes on-chip RAM,
— 14 analog input channels,
— 6 serial interfaces (2 x ASC, 2 x SSC, 2 x CAN)

e XC164CS-8F
— 64 Kbytes Program Flash, 6 Kbytes on-chip RAM,
— 14 analog input channels,
— 6 serial interfaces (2 x ASC, 2 x SSC, 2 x CAN)

e XC164CS-16R
— 128 Kbytes Program ROM, 6 Kbytes on-chip RAM,
— 14 analog input channels,
— 6 serial interfaces (2 x ASC, 2 x SSC, 2 x CAN)

e XC164CS-8R
— 64 Kbytes Program ROM, 6 Kbytes on-chip RAM,
— 14 analog input channels,
— 6 serial interfaces (2 x ASC, 2 x SSC, 2 x CAN)

This manual is valid for these derivatives and describes all variations of the different
available temperature ranges and packages.

For simplicity, these various device types are referred to by the collective term XC164
throughout this manual. The complete pro-electron conforming designations are listed in
the respective data sheets.

Some sections of this manual do not refer to all of the XC164 derivatives which are
currently available or planned (such as devices with different types of on-chip memory
or peripherals). These sections contain respective notes wherever possible.

User’s Manual 1-2 V2.1, 2004-03
Introduction_X41, V2.1

—

Infineon XC164-16 Derivatives
lechnologies System Units (Vol. 1 of 2)
Introduction

1.1 Members of the 16-bit Microcontroller Family

The microcontrollers in the Infineon 16-bit family have been designed to meet the high
performance requirements of real-time embedded control applications. The architecture
of this family has been optimized for high instruction throughput and minimized response
time to external stimuli (interrupts). Intelligent peripheral subsystems have been
integrated to reduce the need for CPU intervention to a minimum extent. This also
minimizes the need for communication via the external bus interface. The high flexibility
of this architecture allows to serve the diverse and varying needs of different application
areas such as automotive, industrial control, or data communications.

The core of the 16-bit family has been developed with a modular family concept in mind.
All family members execute an efficient control-optimized instruction set (additional
instructions for members of the second generation). This allows easy and quick
implementation of new family members with different internal memory sizes and
technologies, different sets of on-chip peripherals, and/or different numbers of 10 pins.

The XBUS concept (internal representation of the external bus interface) provides a
straightforward path for building application-specific derivatives by integrating
application-specific peripheral modules with the standard on-chip peripherals.

As programs for embedded control applications become larger, high level languages are
favored by programmers, because high level language programs are easier to write, to
debug and to maintain. The C166 Family supports this starting with its 2" generation.

The 80C166-type microcontrollers were the first generation of the 16-bit controller
family. These devices established the C166 architecture.

The C165-type and C167-type devices are members of the second generation of this
family. This second generation is even more powerful due to additional instructions for
HLL support, an increased address space, increased internal RAM, and highly efficient
management of various resources on the external bus.

Enhanced derivatives of this second generation provide more features such as
additional internal high-speed RAM, an integrated CAN-Module, an on-chip PLL, etc.

The design of more efficient systems may require the integration of application-specific
peripherals to boost system performance while minimizing the part count. These efforts
are supported by the XBUS, defined for the Infineon 16-bit microcontrollers (second
generation). The XBUS is an internal representation of the external bus interface which
opens and simplifies the integration of peripherals by standardizing the required
interface. One representative taking advantage of this technology is the integrated CAN
module.

The C165-type devices are reduced functionality versions of the C167 because they do
not have the A/D converter, the CAPCOM units, and the PWM module. This results in a
smaller package, reduced power consumption, and design savings.

User’s Manual 1-3 V2.1, 2004-03
Introduction_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Introduction

The C164-type devices, the C167CS derivatives, and some of the C161-type devices
are further enhanced by a flexible power management and form the third generation of
the 16-bit controller family. This power management mechanism provides an effective
means to control the power that is consumed in a certain state of the controller and thus
minimizes the overall power consumption for a given application.

The XC16x derivatives represent the fourth generation of the 16-bit controller family.
The XC166 Family dramatically increases the performance of 16-bit microcontrollers by
several major improvements and additions. The MAC-unit adds DSP-functionality to
handle digital filter algorithms and greatly reduces the execution time of multiplications
and divisions. The 5-stage pipeline, single-cycle execution of most instructions, and
PEC-transfers within the complete addressing range increase system performance.
Debugging the target system is supported by integrated functions for On-Chip Debug
Support (OCDS).

A variety of different versions is provided which offer various kinds of on-chip program
memory"):

* Mask-programmable ROM

* Flash memory

e OTP memory

* ROMless without non-volatile memory.

Also there are devices with specific functional units.

The devices may be offered in different packages, temperature ranges and speed
classes.

Additional standard and application-specific derivatives are planned and are in
development.

Note: Not all derivatives will be offered in all temperature ranges, speed classes,
packages, or program memory variations.

Information about specific versions and derivatives will be made available with the
devices themselves. Contact your Infineon representative for up-to-date material or refer
to http://www.infineon.com/microcontrollers.

Note: As the architecture and the basic features, such as the CPU core and built-in
peripherals, are identical for most of the currently offered versions of the XC164,
descriptions within this manual that refer to the “XC164” also apply to the other
variations, unless otherwise noted.

1) Not all derivatives are offered with all kinds of on-chip memory.

User’s Manual 1-4 V2.1, 2004-03
Introduction_X41, V2.1

—

Infin eon XC1 64-'16 Derivatives
technologies System Units (Vol. 1 of 2)
Introduction

1.2 Summary of Basic Features

The XC164 devices are enhanced members of the Infineon family of full featured 16-bit
single-chip CMOS microcontrollers. The XC164 combines the extended functionality
and performance of the C166SV2 Core with powerful on-chip peripheral subsystems
and on-chip memory units and provides a means for power reduction.
Several key features contribute to the high performance of the XC164:

High Performance 16-bit CPU with Five-Stage Pipeline and MAC Unit

* Single clock cycle instruction execution

* 1 cycle minimum instruction cycle time (most instructions)

* 1 cycle multiplication (16-bit x 16-bit)

* 4 +17 cycles division (32-bit / 16-bit), 4 cycles delay, 17 cycles background execution
e 1 cycle multiply and accumulate instruction (MAC) execution

¢ Automatic saturation or rounding included

e Multiple high bandwidth internal data buses

* Register-based design with multiple, variable register banks

* Two additional fast register banks

* Fast context switching support

e 16 Mbytes of linear address space for code and data (von Neumann architecture)
* System stack cache support with automatic stack overflow/underflow detection

* High performance branch, call, and loop processing

e Zero-cycle jump execution

Control Oriented Instruction Set with High Efficiency

* Bit, byte, and word data types

* Flexible and efficient addressing modes for high code density

* Enhanced boolean bit manipulation with direct addressability of 6 Kbits for peripheral
control and user-defined flags

* Hardware traps to identify exception conditions during runtime

* HLL support for semaphore operations and efficient data access

Power Management Features

Gated clock concept for improved power consumption and EMC

* Programmable system slowdown via clock generation unit

* Flexible management of peripherals, can be individually disabled

e Sleep-mode supports wake-up via fast external interrupts or on-chip RTC

* Programmable frequency output

User’s Manual 1-5 V2.1, 2004-03

Introduction_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Introduction

Integrated On-Chip Memory

* Up to 2 Kbytes Dual-Port RAM (DPRAM) for variables, register banks, and stacks
* Up to 2 Kbytes on-chip high-speed Data SRAM (DSRAM) for variables and stacks
* Up to 2 Kbytes on-chip high-speed Program/Data SRAM (PSRAM) for code and data
* 128 Kbytes on-chip Program Memory for instruction code or constant data
(Flash or Mask ROM, not for ROMIless devices)

Note: The system stack can be located in any memory area within the complete
addressing range.

External Bus Interface

* Up to 12 Mbytes external address space for code and data

e Multiplexed or demultiplexed bus configurations

e Segmentation capability and chip select signal generation

* 8-bit or 16-bit data bus

* Bus cycle characteristics selectable for five programmable address areas

16-Priority-Level Interrupt System

80 interrupt nodes with separate interrupt vectors on 15 priority levels (8 group levels)
13 cycles minimum interrupt latency in case of internal program execution

Fast external interrupts

Programmable external interrupt source selection

Programmable vector table (start location and step-width)

8-Channel Peripheral Event Controller (PEC)

* Interrupt driven single cycle data transfer

* Programmable PEC interrupt request level, (15 down to 8)

e Transfer count option
(standard CPU interrupt after programmable number of PEC transfers)

e Separate interrupt level for PEC termination interrupts selectable

e Overhead from saving and restoring system state for interrupt requests eliminated

* Full 24-bit addresses for source and destination pointers, supporting transfers within
the total address space

Intelligent On-Chip Peripheral Subsystems

e 14-channel A/D Converter with programmable resolution (10-bit or 8-bit) and
conversion time (down to 2.55 us or 2.15 us), auto scan modes, channel injection

* Two Capture/Compare Units with 2 independent time bases each,
very flexible PWM unit/event recording unit with different operating modes,
includes four 16-bit timers/counters, maximum resolution fgyg

User’s Manual 1-6 V2.1, 2004-03
Introduction_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Introduction

Capture/Compare Unit for flexible PWM Signal Generation (CAPCOM®6)

(3/6 Capture/Compare Channels and 1 Compare Channel)

Two Multifunctional General Purpose Timer Units:

— GPT1: three 16-bit timers/counters, maximum resolution fgys/4

— GPT2: two 16-bit timers/counters, maximum resolution fgyg/2

Two Asynchronous/Synchronous Serial Channels (USARTS)

with baud rate generator, parity, framing, and overrun error detection,

with auto baud rate detection, receive/transmit FIFOs, and IrDA support

Two High Speed Synchronous Serial Channels (SPI-compatible)

with programmable data length and shift direction

Controller Area Network (TwinCAN) Module, Rev. 2.0B active, two nodes operating
independently or exchanging data via a gateway function, Full-CAN/Basic-CAN
Real Time Clock with alarm interrupt

Watchdog Timer with programmable time intervals

Bootstrap Loader for flexible system initialization

Protection management for system configuration and control registers

On-Chip Debug Support

On-chip debug controller and related interface to JTAG controller

JTAG interface and break interface

Hardware, software and external pin breakpoints

Up to 4 instruction pointer breakpoints

Debug event control, e.g. with monitor call or CPU halt or trigger of data transfer
Dedicated DEBUG instructions with control via JTAG interface

Access to any internal register or memory location via JTAG interface

Single step support and watchpoints with MOV-injection

Up to 79 10 Lines With Individual Bit Addressability

Tri-stated in input mode

Selectable input thresholds (not on all pins)

Push/pull or open drain output mode

Programmable port driver control

I/O voltage is 5 V (core-logic and oscillator input voltage is 2.5 V)

Various Temperature Ranges”

0to +70 °C
-40 to +85 °C
-40 to +125 °C

1) Not all derivatives are offered in all temperature ranges.

User’s Manual 1-7 V2.1, 2004-03
Introduction_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Introduction

Infineon CMOS Process

* Low power CMOS technology enables power saving ldle, Sleep, and Power Down
modes with flexible power management.

100-Pin Plastic Thin Quad Flat Pack (TQFP) Package

e P-TQFP, 14 x 14 mm body, 0.5 mm (19.7 mil) lead spacing,
surface mount technology

Complete Development Support

For the development tool support of its microcontrollers, Infineon follows a clear third
party concept. Currently around 120 tool suppliers world-wide, ranging from local niche
manufacturers to multinational companies with broad product portfolios, offer powerful
development tools for the Infineon C500, C166, and XC166 microcontroller families,
guaranteeing a remarkable variety of price-performance classes as well as early
availability of high quality key tools such as compilers, assemblers, simulators,
debuggers or in-circuit emulators.

Infineon incorporates its strategic tool partners very early into the product development
process, making sure embedded system developers get reliable, well-tuned tool
solutions, which help them unleash the power of Infineon microcontrollers in the most
effective way and with the shortest possible learning curve.

The tool environment for the Infineon 16-bit microcontrollers includes the following tools:

e Compilers (C, MODULA2, FORTH)
* Macro-assemblers, linkers, locators, library managers, format-converters

* Architectural simulators

e HLL debuggers

* Real-time operating systems

¢ VHDL chip models

* In-circuit emulators (based on bondout or standard chips)

* Plug-in emulators

e Emulation and clip-over adapters, production sockets

* Logic analyzer disassemblers

e Starter kits

¢ Evaluation boards with monitor programs

* Industrial boards (also for CAN, FUZZY, PROFIBUS, FORTH applications)
* Network driver software (CAN, PROFIBUS)

User’s Manual 1-8 V2.1, 2004-03

Introduction_X41, V2.1

—

Infineon
ec no Ogles/

XC164-16 Derivatives
System Units (Vol. 1 of 2)

1.3

Abbreviations

The following acronyms and terms are used within this document:

JTAG
ADC
ALE
ALU
ASC
CAN
CAPCOM
CISC
CMOS
CPU
DMU
EBC
ESFR
Flash
GPR
GPT
HLL
lC

10
LXBus
OCDS
OTP
PEC
PLA
PLL
PMU
PWM
RAM
RISC

User’s Manual

Joint Test Access Group

Analog Digital Converter

Address Latch Enable

Arithmetic and Logic Unit
Asynchronous/synchronous Serial Channel
Controller Area Network (License Bosch)
CAPture and COMpare unit

Complex Instruction Set Computing
Complementary Metal Oxide Silicon
Central Processing Unit

Data Management Unit

External Bus Controller

Extended Special Function Register
Non-volatile memory that may be electrically erased
General Purpose Register

General Purpose Timer unit

High Level Language

Inter Integrated Circuit (Bus)

Input/Output

Internal representation of the external bus
On-Chip Debug Support

One-Time Programmable memory
Peripheral Event Controller
Programmable Logic Array

Phase Locked Loop

Program Management Unit

Pulse Width Modulation

Random Access Memory

Reduced Instruction Set Computing

1-9

Introduction_X41, V2.1

Introduction

V2.1, 2004-03

—

Infin eon < t)(C1 34-'1 6 [\),erllv1at|\;ezs
cchnologies ystem Units (Vol. 1 of 2)
Introduction
ROM Read Only Memory
RTC Real Time Clock
SFR Special Function Register
SSC Synchronous Serial Channel
1.4 Naming Conventions

The manifold bitfields used for control functions and status indication and the registers
housing them are equipped with unique names wherever applicable. Thereby these
control structured can be referred to by their names rather than by their location. This
makes the descriptions by far more comprehensible.

To describe regular structures (such as ports) indices are used instead of a plethora of
similar bit names, so bit 3 of port 5 is referred to as P5.3.

Where it helps to clarify the relation between several named structures, the next higher
level is added to the respective name to make it unambiguous.

The term ADC_CTRO clearly identifies register CTRO as part of module ADC, the term
SYSCON1.CPSYS clearly identifies bitfield CPSYS as part of register SYSCON/1.

User’s Manual 1-10 V2.1, 2004-03
Introduction_X41, V2.1

—

technologies - System Units (Vol. 1 of 2)
Architectural Overview
2 Architectural Overview

The architecture of the XC164 core combines the advantages of both RISC and CISC
processors in a very well-balanced way. This computing and controlling power is
completed by the DSP-functionality of the MAC-unit. The XC164 integrates this powerful
CPU core with a set of powerful peripheral units into one chip and connects them very
efficiently. On-chip memory blocks with dedicated buses and control units store code
and data. This combination of features results in a high performance microcontroller,
which is the right choice not only for today’s applications, but also for future engineering
challenges. One of the buses used concurrently on the XC164 is the LXBus, an internal
representation of the external bus interface. This bus provides a standardized method
for integrating additional application-specific peripherals into derivatives of the standard
XC164.

PSRAM DPRAM DSRAM
ﬁ
ProgMem e EBC
Flash / ROM 2 2 XBUS Control
128 KBytes o 2] CPU K = - External Bus
Control
C166SV2-Core
ocbs |—»
Debug Support D — |
< Osc/PLL |RTC [wDT .
éTAL Clock Generation Interrupt & PEC J—
. . . . Interrupt Bus .
1 | [T T T T
[aTa s laT eI TR AT
ADC | GPT |ASCO0|ASC1|SSC0|SSC1| CC1 | CC2 CCé6 Twin
8/10-Bit usART)|(usarRT)| (sPI SPI
o | g | veann |wsarnf e | P || CAN
Channels]
L4 |
i NI {0 e e
L_16 1| BRGen | BRGen | BRGen | BRGen | WA | WA VA
\
3] I Ports [Pota [Pots |~ " "[[_PoRTT__]__PORTO |
] | |
5 5 HM ﬁs ﬁm 16 16
~N ~N ~N

MCB04323_x4.vsd

Figure 2-1 XC164 Functional Block Diagram

User’s Manual 2-1 V2.1, 2004-03
Architecture_X41, V2.1

—

Infineon
ec no Ogles/

XC164-16 Derivatives
System Units (Vol. 1 of 2)

Architectural Overview

2.1

The main core of the CPU consists of a set of optimized functional units including the
instruction fetch/processing pipelines, a 16-bit Arithmetic and Logic Unit (ALU), a 40-bit
Multiply and Accumulate Unit (MAC), an Address and Data Unit (ADU), an Instruction
Fetch Unit (IFU), a Register File (RF), and dedicated Special Function Registers (SFRs).

Single clock cycle execution of instructions results in superior CPU performance, while
maintaining C166 code compatibility. Impressive DSP performance, concurrent access
to different kinds of memories and peripherals boost the overall system performance.

Basic CPU Concepts and Optimizations

PMU PSRAM
Flash/ROM
CPU
Prefetch | [csP| 1P | | VECSEG | 2-Stage
i Prefetch
Unit CPUCON1 TFR -LLLI:E’iZeCIine
Branch CPUCON2
Unit Injection/ e DPRAM
Exception
Return Handler
FIFO
Stack IFU IPIP
IDX0 QRO DPPO SPSEG [cp |
IDX1 QR1 DPP1 SP T
QX0 DPP2 STKOV R15
R14 H R1S
QX1 DPP3 STKUN 1 212
\—_/ \—/ L GPRs 4] - [6PRs 4
\ + /\ + apu | || {12 I 1
Multiply [MRw |[|| pivision unit | [Bit-Mask-Gen. 2(1) :__ 2;
Unit Multiply Unit | | Barrel-Shifter —— | l
\ / MCW | wmoc |\ \ / R T
+/- MSW [Psw | +/
[moH || wmoL ||} -
[wman || waL | - Buffer - DSRAM
[zeros || onES ||| F . EBC
MAC ALU WB Peripherals
DMU
mca04917_x.vsd
Figure 2-2 CPU Block Diagram
User's Manual 2-2 V2.1, 2004-03

Architecture_X41, V2.1

—

: XC164-16 Derivatives
!nfmegon/ System Units (Vol. 1 of 2)

Architectural Overview

Summary of CPU Features

Opcode fully upward compatible with C166 Family

2-stage instruction fetch pipeline with FIFO for instruction pre-fetching

5-stage instruction execution pipeline

Pipeline forwarding controls data dependencies in hardware

Multiple high bandwidth buses for data and instructions

Linear address space for code and data (von Neumann architecture)

Nearly all instructions executed in one CPU clock cycle

Fast multiplication (16-bit x 16-bit) in one CPU clock cycle

Fast background execution of division (32-bit / 16-bit) in 21 CPU clock cycles

Built-in advanced MAC (Multiply Accumulate) Unit:

— Single cycle MAC instruction with zero cycle latency including a 16 x 16 multiplier

— 40-bit barrel shifter and 40-bit accumulator to handle overflows

— Automatic saturation to 32 bits or rounding included with the MAC instruction

— Fractional numbers supported directly

— One Finite Impulse Response Filter (FIR) tap per cycle with no circular buffer
management

Enhanced boolean bit manipulation facilities

High performance branch-, call-, and loop-processing

Zero cycle jump execution

Register-based design with multiple variable register banks (byte or word operands)

Two additional fast register banks

Variable stack with automatic stack overflow/underflow detection

“Fast interrupt” and “Fast context switch” features

The high performance and flexibility of the CPU is achieved by a number of optimized
functional blocks (see Figure 2-2). Optimizations of the functional blocks are described
in detail in the following sections.

User’s Manual 2-3 V2.1, 2004-03
Architecture_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Architectural Overview

2.1.1 High Instruction Bandwidth / Fast Execution

Based on the hardware provisions, most of the XC164’s instructions can be executed in
just one clock cycle (1/fcpy). This includes arithmetic instructions, logic instructions, and
move instructions with most addressing modes.

Special instructions such as SRST or PWRDN take more than one machine cycle. Divide
instructions are mainly executed in the background, so other instructions can be
executed in parallel. Due to the prediction mechanism (see Section 4.2), correctly
predicted branch instructions require only one cycle or can even be overlaid with another
instruction (zero-cycle jump).

The instruction cycle time is dramatically reduced through the use of instruction
pipelining. This technique allows the core CPU to process portions of multiple sequential
instruction stages in parallel. Up to seven stages can operate in parallel:

The two-stage instruction fetch pipeline fetches and preprocesses instructions from
the respective program memory:

PREFETCH: Instructions are prefetched from the PMU in the predicted order. The
instructions are preprocessed in the branch detection unit to detect branches. The
prediction logic determines if branches are assumed to be taken or not.

FETCH: The instruction pointer for the next instruction to be fetched is calculated
according to the branch prediction rules. The branch folding unit preprocesses detected
branches and combines them with the preceding instructions to enable zero-cycle
branch execution. Prefetched instructions are stored in the instruction FIFO, while stored
instructions are moved from the instruction FIFO to the instruction processing pipeline.

The five-stage instruction processing pipeline executes the respective instructions:

DECODE: The previously fetched instruction is decoded and the GPR used for indirect
addressing is read from the register file, if required.

ADDRESS: All operand addresses are calculated. For instructions implicitly accessing
the stack the stack pointer (SP) is decremented or incremented.

MEMORY: All required operands are fetched.

EXECUTE: The specified operation (ALU or MAC) is performed on the previously
fetched operands. The condition flags are updated. Explicit write operations to CPU-
SFRs are executed. GPRs used for indirect addressing are incremented or
decremented, if required.

WRITE BACK: The result operands are written to the specified locations. Operands
located in the DPRAM are stored via the write-back buffer.

User’s Manual 2-4 V2.1, 2004-03
Architecture_X41, V2.1

—

technologies - System Units (Vol. 1 of 2)
Architectural Overview
2.1.2 Powerful Execution Units

The 16-bit Arithmetic and Logic Unit (ALU) performs all standard (word) arithmetic
and logical operations. Additionally, for byte operations, signals are provided from bits 6
and 7 of the ALU result to set the condition flags correctly. Multiple precision arithmetic
is provided through a ‘CARRY-IN’ signal to the ALU from previously calculated portions
of the desired operation.

Most internal execution blocks have been optimized to perform operations on either 8-bit
or 16-bit quantities. Instructions have been provided as well to allow byte packing in
memory while providing sign extension of bytes for word wide arithmetic operations. The
internal bus structure also allows transfers of bytes or words to or from peripherals based
on the peripheral requirements.

A set of consistent flags is updated automatically in the PSW after each arithmetic,
logical, shift, or movement operation. These flags allow branching on specific conditions.
Support for both signed and unsigned arithmetic is provided through user-specifiable
branch tests. These flags are also preserved automatically by the CPU upon entry into
an interrupt or trap routine.

A 16-bit barrel shifter provides multiple bit shifts in a single cycle. Rotates and arithmetic
shifts are also supported.

The Multiply and Accumulate Unit (MAC) performs extended arithmetic operations
such as 32-bit addition, 32-bit subtraction, and single-cycle 16-bit x 16-bit multiplication.
The combined MAC operations (multiplication with cumulative addition/subtraction)
represent the major part of the DSP performance of the CPU.

The Address Data Unit (ADU) contains two independent arithmetic units to generate,
calculate, and update addresses for data accesses. The ADU performs the following
major tasks:

e The Standard Address Unit supports linear arithmetic for the short, long, and indirect
addressing modes. It also supports data paging and stack handling.

* The DSP Address Generation Unit contains an additional set of address pointers and
offset registers which are used in conjunction with the CoXXX instructions only.

The CPU provides a lot of powerful addressing modes for word, byte, and bit data
accesses (short, long, indirect). The different addressing modes use different formats
and have different scopes.

Dedicated bit processing instructions provide efficient control and testing of peripherals
while enhancing data manipulation. These instructions provide direct access to two
operands in the bit-addressable space without requiring them to be moved into
temporary flags. Logical instructions allow the user to compare and modify a control bit
for a peripheral in one instruction. Multiple bit shift instructions (single cycle execution)
avoid long instruction streams of single bit shift operations. Bitfield instructions allow the
modification of multiple bits from one operand in a single instruction.

User’s Manual 2-5 V2.1, 2004-03
Architecture_X41, V2.1

—

cchnologies - ystem Units (Vol. 1 of 2)
Architectural Overview
213 High Performance Branch-, Call-, and Loop-Processing

Pipelined execution delivers maximum performance with a stream of subsequent
instructions. Any disruption requires the pipeline to be refilled and the new instruction to
step through the pipeline stages. Due to the high percentage of branching in controller
applications, branch instructions have been optimized to require pipeline refilling only in
special cases. This is realized by detecting and preprocessing branch instructions in the
prefetch stage and by predicting the respective branch target address.

Prefetching then continues from the predicted target address. If the prediction was
correct subsequent instructions can be fed to the execution pipeline without a gap, even
if a branch is executed, i.e. the code execution is not linear. Branch target prediction (see
also Section 4.2.1) uses the following rules:

* Unconditional branches: Branch prediction is trivial in this case, as the branches
will always be taken and the target address is defined. This applies to implicitly
unconditional branches such as JMPS, CALLR, or RET as well as to branches with
condition code “unconditional” such as JMPI cc_UC.

* Fixed prediction: Branch instructions which are often used to realize loops are
assumed to be taken if they branch backward to a previous location (the begin of the
loop). This applies to conditional branches such as JMPR cc_XX or JNB.

e Variable prediction: In this case the respective prediction (taken or not taken) is
coded into the instruction and can, therefore, be selected for each individual branch
instruction. Thus, the software designer can optimize the instruction flow to the
specific code to be executed". This applies to the branch instructions JMPA and
CALLA.

e Conditional indirect branches: These branches are always assumed to be not
taken. This applies to branch instructions JMPI cc_XX, [Rw] and CALLI cc_XX, [Rw].

The system state information is saved automatically on the internal system stack, thus
avoiding the use of instructions to preserve state upon entry and exit of interrupt or trap
routines. Call instructions push the value of the IP on the system stack, and require the
same execution time as branch instructions. Additionally, instructions have been
provided to support indirect branch and call instructions. This feature supports
implementation of multiple CASE statement branching in assembler macros and high
level languages.

1) The programming tools accept either dedicated mnemonics for each prediction leaving the choice up to
programmer, or they accept generic mnemonics and apply their own prediction rules.

User’s Manual 2-6 V2.1, 2004-03
Architecture_X41, V2.1

—

technologies - System Units (Vol. 1 of 2)
Architectural Overview
21.4 Consistent and Optimized Instruction Formats

To obtain optimum performance in a pipelined design, an instruction set has been
designed which incorporates concepts from Reduced Instruction Set Computing (RISC).
These concepts primarily allow fast decoding of the instructions and operands while
reducing pipeline holds. These concepts, however, do not preclude the use of complex
instructions required by microcontroller users. The instruction set was designed to meet
the following goals:

* Provide powerful instructions for frequently-performed operations which traditionally
have required sequences of instructions. Avoid transfer into and out of temporary
registers such as accumulators and carry bits. Perform tasks in parallel such as
saving state upon entry into interrupt routines or subroutines.

* Avoid complex encoding schemes by placing operands in consistent fields for each
instruction and avoid complex addressing modes which are not frequently used.
Consequently, the instruction decode time decreases and the development of
compilers and assemblers is simplified.

e Provide most frequently used instructions with one-word instruction formats. All other
instructions use two-word formats. This allows all instructions to be placed on word
boundaries: this alleviates the need for complex alignment hardware. It also has the
benefit of increasing the range for relative branching instructions.

The high performance of the CPU-hardware can be utilized efficiently by a programmer
by means of the highly functional XC164 instruction set which includes the following
instruction classes:

* Arithmetic Instructions

e DSP Instructions

* Logical Instructions

* Boolean Bit Manipulation Instructions
e Compare and Loop Control Instructions
e Shift and Rotate Instructions

* Prioritize Instruction

¢ Data Movement Instructions

* System Stack Instructions

e Jump and Call Instructions

e Return Instructions

e System Control Instructions

¢ Miscellaneous Instructions

Possible operand types are bits, bytes, words, and doublewords. Specific instructions
support the conversion (extension) of bytes to words. Various direct, indirect, and
immediate addressing modes are provided to specify the required operands.

User’s Manual 2-7 V2.1, 2004-03
Architecture_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Architectural Overview

2.1.5 Programmable Multiple Priority Interrupt System

The XC164 provides 80 separate interrupt nodes that may be assigned to 16 priority
levels with 8 group priorities on each level. Most interrupt sources are connected to a
dedicated interrupt node. In some cases, multi-source interrupt nodes are incorporated
for efficient use of system resources. These nodes can be activated by several source
requests and are controlled via interrupt subnode control registers.

The following enhancements within the XC164 allow processing of a large number of
interrupt sources:

* Peripheral Event Controller (PEC): This processor is used to off-load many interrupt
requests from the CPU. It avoids the overhead of entering and exiting interrupt or trap
routines by performing single-cycle interrupt-driven byte or word data transfers
between any two locations with an optional increment of the PEC source pointer, the
destination pointer, or both. Only one cycle is ‘stolen’ from the current CPU activity to
perform a PEC service.

* Multiple Priority Interrupt Controller: This controller allows all interrupts to be
assigned any specified priority. Interrupts may also be grouped, which enables the
user to prevent similar priority tasks from interrupting each other. For each of the
interrupt nodes, there is a separate control register which contains an interrupt
request flag, an interrupt enable flag, and an interrupt priority bitfield. After being
accepted by the CPU, an interrupt service can be interrupted only by a higher
prioritized service request. For standard interrupt processing, each of the interrupt
nodes has a dedicated vector location.

* Multiple Register Banks: Two local register banks for immediate context switching
add to a relocatable global register bank. The user can specify several register banks
located anywhere in the internal DPRAM and made of up to sixteen general purpose
registers. A single instruction switches from one register bank to another (switching
banks flushes the pipeline, changing the global bank requires a validation sequence).

The XC164 is capable of reacting very quickly to non-deterministic events because its
interrupt response time is within a very narrow range of typically 13 clock cycles (in the
case of internal program execution). Its fast external interrupt inputs are sampled every
clock cycle and allow even very short external signals to be recognized.

The XC164 also provides an excellent mechanism to identify and process exceptions or
error conditions that arise during run-time, so called ‘Hardware Traps’. A hardware trap
causes an immediate non-maskable system reaction which is similar to a standard
interrupt service (branching to a dedicated vector table location). The occurrence of a
hardware trap is additionally signified by an individual bit in the trap flag register (TFR).
Unless another, higher prioritized, trap service is in progress, a hardware trap will
interrupt any current program execution. In turn, a hardware trap service can normally
not be interrupted by a standard or PEC interrupt.

Software interrupts are supported by means of the “TRAP’ instruction in combination with
an individual trap (interrupt) number.

User’s Manual 2-8 V2.1, 2004-03
Architecture_X41, V2.1

—

technologies - System Units (Vol. 1 of 2)
Architectural Overview
2.1.6 Interfaces to System Resources

The CPU of the XC164 interfaces to the system resources via several bus systems
which contribute to the overall performance by transferring data concurrently. This
avoids stalling the CPU because instructions or operands need to be transferred.

The Dual Port RAM (DPRAM) is directly coupled to the CPU because it houses the
global register banks. Transfers from/to these locations affect the performance and are,
therefore, carefully optimized.

The Program Management Unit (PMU) controls accesses to the on-chip program
memory blocks such as the ROM/Flash module and the Program/Data RAM (PSRAM)
and also fetches instructions from external memory.

The 64-bit interface between the PMU and the CPU delivers the instruction words, which
are requested by the CPU. The PMU decides whether the requested instruction word
has to be fetched from on-chip memory or from external memory.

The Data Management Unit (DMU) controls accesses to the on-chip Data RAM
(DSRAM), to the on-chip peripherals connected to the peripheral bus, and to resources
on the external bus. External accesses (including accesses to peripherals connected to
the on-chip LXBus) are executed by the External Bus Controller (EBC).

The 16-bit interface between the DMU and the CPU handles all data transfers
(operands). Data accesses by the CPU are distributed to the appropriate buses
according to the defined address map.

PMU and DMU are directly coupled to perform cross-over transfers with high speed.
Crossover transfers are executed in both directions:

* PMU via DMU: Code fetches from external locations are redirected via the DMU to
EBC. Thus, the XC164 can execute code from external resources. No code can be
fetched from the Data RAM (DSRAM).

e DMU via PMU: Data accesses can also be executed to on-chip resources controlled
by the PMU. This includes the following types of transfers:

— Read a constant from the on-chip program ROM/Flash

— Read data from the on-chip PSRAM

— Write data to the on-chip PSRAM (required prior to executing out of it)
— Program/Erase the on-chip Flash memory

User’s Manual 2-9 V2.1, 2004-03
Architecture_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Architectural Overview

2.2 On-Chip System Resources

The XC164 controllers provide a number of powerful system resources designed around
the CPU. The combination of CPU and these resources results in the high performance
of the members of this controller family.

Peripheral Event Controller (PEC) and Interrupt Control

The Peripheral Event Controller enables response to an interrupt request with a single
data transfer (word or byte) which consumes only one instruction cycle and does not
require saving and restoring the machine status. Each interrupt source is prioritized for
every machine cycle in the interrupt control block. If PEC service is selected, a PEC
transfer is started. If CPU interrupt service is requested, the current CPU priority level
stored in the PSW register is tested to determine whether a higher priority interrupt is
currently being serviced. When an interrupt is acknowledged, the current state of the
machine is saved on the internal system stack and the CPU branches to the system
specific vector for the peripheral.

The PEC contains a set of SFRs which store the count value and control bits for eight
data transfer channels. In addition, the PEC uses a dedicated area of RAM which
contains the source and destination addresses. The PEC is controlled in a manner
similar to any other peripheral: through SFRs containing the desired configuration of
each channel.

An individual PEC transfer counter is implicitly decremented for each PEC service
except in the continuous transfer mode. When this counter reaches zero, a standard
interrupt is performed to the vector location related to the corresponding source. PEC
services are very well suited, for example, to moving register contents to/from a memory
table. The XC164 has eight PEC channels, each of which offers such fast interrupt-
driven data transfer capabilities.

Memory Areas

The memory space of the XC164 is configured in a Von Neumann architecture. This
means that code memory, data memory, registers, and 1O ports are organized within the
same linear address space which covers up to 16 Mbytes. The entire memory space can
be accessed bytewise or wordwise. Particular portions of the on-chip memory have been
made directly bit addressable as well.

128 Kbytes of on-chip Flash or ROM memory store code or constant data. The on-
chip Flash memory is organized as four 8-Kbyte sectors, one 32-Kbyte sector, and one
64-Kbyte sector. Each sector can be separately write protected’, erased and
programmed (in blocks of 128 bytes). The complete Flash area can be read-protected.
A password sequence temporarily unlocks protected areas. The Flash module combines

1) Each two 8-Kbyte sectors are combined for write-protection purposes.

User’s Manual 2-10 V2.1, 2004-03
Architecture_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Architectural Overview

very fast 64-bit one-cycle' read accesses with protected and efficient writing algorithms
for programming and erasing. Dynamic error correction provides extremely high read
data security for all read accesses.

Programming typically takes 2 ms per 128-byte block (5 ms max.), erasing a sector
typically takes 200 ms (500 ms max.).

The ROM is mask programmed at the factory.

Note: Program execution from on-chip program memory is the fastest of all possible
alternatives and results in maximum performance. The type of the on-chip
program memory depends on the chosen derivative. On-chip program memory
also includes the PSRAM.

2 Kbytes of on-chip Program SRAM (PSRAM) are provided to store user code or data.
The PSRAM is accessed via the PMU and is therefore optimized for code fetches.

2 Kbytes of on-chip Data SRAM (DSRAM) are provided as a storage for general user
data.The DSRAM is accessed via the DMU and is therefore optimized for data accesses.

2 Kbytes of on-chip Dual-Port RAM (DPRAM) are provided as a storage for user
defined variables, for the system stack, and in particular for general purpose register
banks. A register bank can consist of up to 16 wordwide (RO to R15) and/or bytewide
(RLO, RHO, ..., RL7, RH7) so-called General Purpose Registers (GPRs).

The upper 256 bytes of the DPRAM are directly bitaddressable. When used by a GPR,
any location in the DPRAM is bitaddressable.

The CPU has an actual register context of up to 16 wordwide and/or bytewide global
GPRs at its disposal, which are physically located within the on-chip RAM area. A
Context Pointer (CP) register determines the base address of the active global register
bank to be accessed by the CPU at a time. The number of register banks is restricted
only by the available internal RAM space. For easy parameter passing, a register bank
may overlap other register banks.

A system stack of up to 32 Kwords is provided as storage for temporary data. The system
stack can be located anywhere within the complete addressing range and it is accessed
by the CPU via the Stack Pointer (SP) register and the Stack Pointer Segment (SPSEG)
register. Two separate SFRs, STKOV and STKUN, are implicitly compared against the
stack pointer value upon each stack access for the detection of a stack overflow or
underflow. This mechanism also supports the control of a bigger virtual stack. Maximum
performance for stack operations is achieved by allocating the system stack to internal
data RAM areas (DPRAM, DSRAM).

Hardware detection of the selected memory space is placed at the internal memory
decoders and allows the user to specify any address directly or indirectly and obtain the
desired data without using temporary registers or special instructions.

1) Flash accesses may require waitstates, depending on the actual operating frequency. For the exact Flash
memory access timing and the required waitstates please refer to Section 3.10.2.

User’s Manual 2-11 V2.1, 2004-03
Architecture_X41, V2.1

—

Infineon
ec no Ogles/

XC164-16 Derivatives
System Units (Vol. 1 of 2)

Architectural Overview

For Special Function Registers three areas of the address space are reserved: The
standard Special Function Register area (SFR) uses 512 bytes, while the Extended
Special Function Register area (ESFR) uses the other 512 bytes. A range of 4 Kbytes is
provided for the internal 10 area (XSFR). SFRs are wordwide registers which are used
for controlling and monitoring functions of the different on-chip units. Unused SFR
addresses are reserved for future members of the XC166 Family with enhanced
functionality. Therefore, they should either not be accessed, or written with zeros, to
ensure upward compatibility.

In order to meet the needs of designs where more memory is required than is provided
on chip, up to 12 Mbytes (approximately, see Table 2-1) of external RAM and/or ROM
can be connected to the microcontroller. The External Bus Interface also provides

access to external peripherals.

Table 2-1 XC164 Memory Map"

Address Area Start Loc. |[End Loc. |Area Size? |Notes

Flash register space FFFO00, |FFFFFF, |4 Kbytes 3

Reserved (Acc. trap) F80000, |FFEFFF, |<0.5Mbytes |Minus Flash regs
Reserved for PSRAM | E0’0800, |F7’FFFF, |< 1.5 Mbytes | Minus PSRAM
Program SRAM E0’0000,4 |EOO7FF, |2 Kbytes Maximum
Reserved for pr. mem. |C2’0000,, |DFFFFF, |<2 Mbytes |Minus Flash
Program Flash C0’0000, |CTFFFF, |128 Kbytes |-

Reserved BF’0000,, |BFFFFF, |64 Kbytes -

External memory area |40°0000, |BE’FFFF, |<8 Mbytes |Minus res. seg.
External IO area® 20’0800, |3FFFFF, |[<2 Mbytes |Minus TwinCAN
TwinCAN registers 20°0000, |2007FFy |2 Kbytes -

External memory area | 01’0000, |1FFFFF, |<2 Mbytes |Minus segment 0
Data RAMs and SFRs | 00’8000, |OO0'FFFF, |32 Kbytes Partly used
External memory area | 00’0000, |OQ07FFF, |32 Kbytes —

1) Accesses to the shaded areas generate external bus accesses.

)

peripherals properly.

User’s Manual
Architecture_X41, V2.1

2-12

) The areas marked with “<” are slightly smaller than indicated, see column “Notes”.
) Not defined register locations return a trap code.
) Several pipeline optimizations are not active within the external 10 area. This is necessary to control external

V2.1, 2004-03

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Architectural Overview

External Bus Interface

To meet the needs of designs where more memory is required than is provided on chip,
up to 12 Mbytes of external RAM and/or ROM can be connected to the XC164
microcontroller via its external bus interface.

All of the external memory accesses are performed by a particular on-chip External Bus
Controller (EBC). It can be programmed either to Single Chip Mode when no external
memory is required, or to one of four different external memory access modes", which
are as follows:

16 ... 24-bit Addresses, 16-bit Data, Demultiplexed
16 ... 24-bit Addresses, 16-bit Data, Multiplexed
16 ... 24-bit Addresses, 8-bit Data, Multiplexed

16 ... 24-bit Addresses, 8-bit Data, Demultiplexed

In the demultiplexed bus modes, addresses are output on PORT1 and data is
input/output on PORTO or POL, respectively. In the multiplexed bus modes both
addresses and data use PORTO for input/output. The high order address (segment) lines
use Port 4. The number of active segment address lines is selectable, restricting the
external address space to 8 Mbytes ... 64 Kbytes. This is required when interface lines
are assigned to Port 4.

For up to five address areas the bus mode (multiplexed/demultiplexed), the data bus
width (8-bit/16-bit) and even the length of a bus cycle (waitstates, signal delays) can be
selected independently. This allows access to a variety of memory and peripheral
components directly and with maximum efficiency.

The external bus timing is related to the rising edge of the reference clock output
CLKOUT. The external bus protocol is compatible with that of the standard C166 Family.

For applications which require less than 64 Kbytes of address space, a nhon-segmented
memory model can be selected, where all locations can be addressed by 16 bits. Thus,
Port 4 is not needed as an output for the upper address bits (Axx ... A16), as is the case
when using the segmented memory model.

The EBC also controls accesses to resources connected to the on-chip LXBus. The
LXBus is an internal representation of the external bus and allows accessing integrated
peripherals and modules in the same way as external components.

The TwinCAN module is connected and accessed via the LXBus.

1) Bus modes are switched dynamically if several address windows with different mode settings are used.

User’s Manual 2-13 V2.1, 2004-03
Architecture_X41, V2.1

—

cchnologies - ystem Units (Vol. 1 of 2)
Architectural Overview
2.3 On-Chip Peripheral Blocks

The XC166 Family clearly separates peripherals from the core. This structure permits
the maximum number of operations to be performed in parallel and allows peripherals to
be added or deleted from family members without modifications to the core. Each
functional block processes data independently and communicates information over
common buses. Peripherals are controlled by data written to the respective Special
Function Registers (SFRs). These SFRs are located within either the standard SFR area
(OO’FEOQOy ... OO’FFFF,), the extended ESFR area (00’FO00y ... 00’F1FF,), or within the
internal 10 area (00’EOQQy ... OO’EFFF,).

These built-in peripherals either allow the CPU to interface with the external world or
provide functions on-chip that otherwise would need to be added externally in the
respective system.

The XC164 generic peripherals are:

* Two General Purpose Timer Blocks (GPT1 and GPT2)

* Two Asynchronous/Synchronous Serial Interfaces (ASCO and ASC1)
Two High Speed Serial Interfaces (SSCO and SSC1)

A Watchdog Timer

Two Capture/Compare units (CAPCOM1 and CAPCOM2)

Enhanced Capture/Compare unit (CAPCOM®G)

A 10-bit Analog/Digital Converter (ADC)

* A Real Time Clock (RTC)

e Seven I/O ports with a total of 79 I/O lines

Because the LXBus is the internal representation of the external bus, it does not support
bit-addressing. Accesses are executed by the EBC as if it were external accesses. The
LXBus connects on-chip peripherals to the CPU:

* TwinCAN module with 2 CAN nodes and gateway functionality

Each peripheral also contains a set of Special Function Registers (SFRs) which control
the functionality of the peripheral and temporarily store intermediate data results. Each
peripheral has an associated set of status flags. Individually selected clock signals are
generated for each peripheral from binary multiples of the master clock.

User’s Manual 2-14 V2.1, 2004-03
Architecture_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Architectural Overview

Peripheral Interfaces

The on-chip peripherals generally have two different types of interfaces: an interface to
the CPU and an interface to external hardware. Communication between the CPU and
peripherals is performed through Special Function Registers (SFRs) and interrupts. The
SFRs serve as control/status and data registers for the peripherals. Interrupt requests
are generated by the peripherals based on specific events which occur during their
operation, such as operation complete, error, etc.

To interface with external hardware, specific pins of the parallel ports are used, when an
input or output function has been selected for a peripheral. During this time, the port pins
are controlled either by the peripheral (when used as outputs) or by the external
hardware which controls the peripheral (when used as inputs). This is called the
‘alternate (input or output) function’ of a port pin, in contrast to its function as a general
purpose /O pin.

Peripheral Timing

Internal operation of the CPU and peripherals is based on the master clock (fy,c). The
clock generation unit uses the on-chip oscillator to derive the master clock from the
crystal or from the external clock signal. The clock signal gated to the peripherals is
independent from the clock signal that feeds the CPU. During Idle mode, the CPU’s clock
is stopped while the peripherals continue their operation. Peripheral SFRs may be
accessed by the CPU once per state. When an SFR is written to by software in the same
state where it is also to be modified by the peripheral, the software write operation has
priority. Further details on peripheral timing are included in the specific sections
describing each peripheral.

Programming Hints

* Access to SFRs: All SFRs reside in data page 3 of the memory space. The following

addressing mechanisms allow access to the SFRs:

— Indirect or direct addressing with 16-bit (mem) addresses must guarantee that
the used data page pointer (DPPO ... DPP3) selects data page 3.

— Accesses via the Peripheral Event Controller (PEC) use the SRCPx and DSTPx
pointers instead of the data page pointers.

— Short 8-bit (reg) addresses to the standard SFR area do not use the data page
pointers but directly access the registers within this 512-byte area.

— Short 8-bit (reg) addresses to the extended ESFR area require switching to the
512-byte Extended SFR area. This is done via the EXTension instructions EXTR,
EXTP(R), EXTS(R).

User’s Manual 2-15 V2.1, 2004-03
Architecture_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Architectural Overview

* Byte Write Operations to wordwide SFRs via indirect or direct 16-bit (mem)
addressing or byte transfers via the PEC force zeros in the non-addressed byte. Byte
write operations via short 8-bit (reg) addressing can access only the low byte of an
SFR and force zeros in the high byte. It is therefore recommended, to use the bit field
instructions (BFLDL and BFLDH) to write to any number of bits in either byte of an
SFR without disturbing the non-addressed byte and the unselected bits.

* Reserved Bits: Some of the bits which are contained in the XC164’s SFRs are
marked as ‘Reserved’. User software should never write ‘1’s to reserved bits. These
bits are currently not implemented and may be used in future products to invoke new
functions. In that case, the active state for those new functions will be ‘1’, and the
inactive state will be ‘O’. Therefore writing only ‘O’s to reserved locations allows
portability of the current software to future devices. After read accesses, reserved bits
should be ignored or masked out.

Capture/Compare Units (CAPCOM1/2)

The CAPCOM units support generation and control of timing sequences on up to
32 channels with a maximum resolution of 1 system clock cycle (8 cycles in staggered
mode). The CAPCOM units are typically used to handle high speed I/O tasks such as
pulse and waveform generation, pulse width modulation (PMW), Digital to Analog (D/A)
conversion, software timing, or time recording relative to external events.

Four 16-bit timers (TO/T1, T7/T8) with reload registers provide two independent time
bases for each capture/compare register array.

The input clock for the timers is programmable to several prescaled values of the internal
system clock, or may be derived from an overflow/underflow of timer T6 in module GPT2.
This provides a wide range of variation for the timer period and resolution and allows
precise adjustments to the application specific requirements. In addition, external count
inputs for CAPCOM timers TO and T7 allow event scheduling for the capture/compare
registers relative to external events.

Both of the two capture/compare register arrays contain 16 dual purpose
capture/compare registers, each of which may be individually allocated to either
CAPCOM timer TO or T1 (T7 or T8, respectively), and programmed for capture or
compare function.

All registers of each module have each one port pin associated with it which serves as
an input pin for triggering the capture function, or as an output pin to indicate the
occurrence of a compare event.

User’s Manual 2-16 V2.1, 2004-03
Architecture_X41, V2.1

—

: XC164-16 Derivatives
!nfmegon/ System Units (Vol. 1 of 2)

Architectural Overview

Table 2-2 Compare Modes (CAPCOM1/2)

Compare Modes Function
Mode 0 Interrupt-only compare mode;

several compare interrupts per timer period are possible
Mode 1 Pin toggles on each compare match;

several compare events per timer period are possible
Mode 2 Interrupt-only compare mode;

only one compare interrupt per timer period is generated
Mode 3 Pin set ‘1’ on match; pin reset ‘0’ on compare timer overflow;

only one compare event per timer period is generated
Double Register Two registers operate on one pin;
Mode pin toggles on each compare match;

several compare events per timer period are possible

Single Event Mode Generates single edges or pulses;
can be used with any compare mode

When a capture/compare register has been selected for capture mode, the current
contents of the allocated timer will be latched (‘captured’) into the capture/compare
register in response to an external event at the port pin which is associated with this
register. In addition, a specific interrupt request for this capture/compare register is
generated. Either a positive, a negative, or both a positive and a negative external signal
transition at the pin can be selected as the triggering event.

The contents of all registers which have been selected for one of the five compare modes
are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare
register, specific actions will be taken based on the selected compare mode.

User’s Manual 2-17 V2.1, 2004-03
Architecture_X41, V2.1

—

: XC164-16 Derivatives
!nfmegon/ System Units (Vol. 1 of 2)

Architectural Overview

Capture/Compare Unit CAPCOM6

The CAPCOMSG6 unit supports generation and control of timing sequences on up to three
16-bit capture/compare channels plus one independent 10-bit compare channel.

In compare mode the CAPCOM®G6 unit provides two output signals per channel which
have inverted polarity and non-overlapping pulse transitions (deadtime control). The
compare channel can generate a single PWM output signal and is further used to
modulate the capture/compare output signals.

In capture mode the contents of compare timer T12 is stored in the capture registers
upon a signal transition at pins CCx.

The output signals can be generated in edge-aligned or center-aligned PWM mode.
They are generated continuously or in single-shot mode.

Compare timers T12 (16-bit) and T13 (10-bit) are free running timers which are clocked
by the prescaled system clock.

For motor control applications (brushless DC-drives) both subunits may generate
versatile multichannel PWM signals which are basically either controlled by compare
timer T12 or by a typical hall sensor pattern at the interrupt inputs (block commutation).
The latter mode provides noise filtering for the hall inputs and supports automatic
rotational speed measurement.

The trap function offers a fast emergency stop without CPU activity. Triggered by an
external signal (CTRAP) the outputs are switched to selectable logic levels which can be
adapted to the connected power stages.

User’s Manual 2-18 V2.1, 2004-03
Architecture_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Architectural Overview

General Purpose Timer (GPT12E) Unit

The GPT12E unit represents a very flexible multifunctional timer/counter structure which
may be used for many different time related tasks such as event timing and counting,
pulse width and duty cycle measurements, pulse generation, or pulse multiplication.

The GPT12E unit incorporates five 16-bit timers which are organized in two separate
blocks, GPT1 and GPT2. Each timer in each block may operate independently in a
number of different modes, or may be concatenated with another timer of the same
block.

Each of the three timers T2, T3, T4 of block GPT1 can be configured individually for one
of four basic modes of operation, which are Timer, Gated Timer, Counter, and
Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from
the system clock, divided by a programmable prescaler, while Counter Mode allows a
timer to be clocked in reference to external events.

Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the
operation of a timer is controlled by the ‘gate’ level on an external input pin. For these
purposes, each timer has one associated port pin (TxIN) which serves as gate or clock
input. The maximum resolution of the timers in block GPT1 is 4 system clock cycles.

The count direction (up/down) for each timer is programmable by software or may
additionally be altered dynamically by an external signal on a port pin (TXEUD) to
facilitate e.g. position tracking.

In Incremental Interface Mode the GPT1 timers (T2, T3, T4) can be directly connected
to the incremental position sensor signals A and B via their respective inputs TxIN and
TxEUD. Direction and count signals are internally derived from these two input signals,
so the contents of the respective timer Tx corresponds to the sensor position. The third
position sensor signal TOPO can be connected to an interrupt input.

Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer over-
flow/underflow. The state of this latch may be output on pin T3OUT e.g. for time out
monitoring of external hardware components. It may also be used internally to clock
timers T2 and T4 for measuring long time periods with high resolution.

In addition to their basic operating modes, timers T2 and T4 may be configured as reload
or capture registers for timer T3. When used as capture or reload registers, timers T2
and T4 are stopped. The contents of timer T3 is captured into T2 or T4 in response to a
signal at their associated input pins (TxIN). Timer T3 is reloaded with the contents of T2
or T4 triggered either by an external signal or by a selectable state transition of its toggle
latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite
state transitions of T3OTL with the low and high times of a PWM signal, this signal can
be constantly generated without software intervention.

With its maximum resolution of 2 system clock cycles, the GPT2 block provides precise
event control and time measurement. It includes two timers (T5, T6) and a
capture/reload register (CAPREL). Both timers can be clocked with an input clock which

User’s Manual 2-19 V2.1, 2004-03
Architecture_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Architectural Overview

is derived from the CPU clock via a programmable prescaler or with external signals. The
count direction (up/down) for each timer is programmable by software or may
additionally be altered dynamically by an external signal on a port pin (TXEUD).
Concatenation of the timers is supported via the output toggle latch (T6OTL) of timer T6,
which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, and/or it may be output on pin
T60OUT. The overflows/underflows of timer T6 can additionally be used to clock the
CAPCOM1/2 timers, and to cause a reload from the CAPREL register.

The CAPREL register may capture the contents of timer T5 based on an external signal
transition on the corresponding port pin (CAPIN), and timer T5 may optionally be cleared
after the capture procedure. This allows the XC164 to measure absolute time differences
or to perform pulse multiplication without software overhead.

The capture trigger (timer T5 to CAPREL) may also be generated upon transitions of
GPT1 timer T3’s inputs T3IN and/or T3EUD. This is especially advantageous when T3
operates in Incremental Interface Mode.

User’s Manual 2-20 V2.1, 2004-03
Architecture_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Architectural Overview

Real Time Clock

The Real Time Clock (RTC) module of the XC164 is directly clocked via a separate clock
driver with the prescaled on-chip main oscillator frequency (fgrc = foscm/32)- It is
therefore independent from the selected clock generation mode of the XC164.

The RTC basically consists of a chain of divider blocks:

* aselectable 8:1 divider (on - off)
e the reloadable 16-bit timer T14
» the 32-bit RTC timer block (accessible via registers RTCH and RTCL), made of:
— areloadable 10-bit timer
— a reloadable 6-bit timer
— a reloadable 6-bit timer
— a reloadable 10-bit timer

All timers count up. Each timer can generate an interrupt request. All requests are
combined to a common node request. Additionally, T14 can generate a separate node
request.

Note: The registers associated with the RTC are not affected by a reset in order to
maintain the correct system time even when intermediate resets are executed.

The RTC module can be used for different purposes:

e System clock to determine the current time and date,
optionally during idle mode, sleep mode, and power down mode

e Cyclic time based interrupt, to provide a system time tick independent of CPU
frequency and other resources, e.g. to wake-up regularly from idle mode

e 48-bit timer for long term measurements (maximum timespan is > 100 years)

* Alarm interrupt for wake-up on a defined time

User’s Manual 2-21 V2.1, 2004-03
Architecture_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Architectural Overview

A/D Converter

For analog signal measurement, a 10-bit A/D converter with 14 multiplexed input
channels and a sample and hold circuit has been integrated on-chip. It uses the method
of successive approximation. The sample time (for loading the capacitors) and the
conversion time is programmable (in two modes) and can thus be adjusted to the
external circuitry. The A/D converter can also operate in 8-bit conversion mode, where
the conversion time is further reduced.

Overrun error detection/protection is provided for the conversion result register
(ADDAT): either an interrupt request will be generated when the result of a previous
conversion has not been read from the result register at the time the next conversion is
complete, or the next conversion is suspended in such a case until the previous result
has been read.

For applications which require less analog input channels, the remaining channel inputs
can be used as digital input port pins.

The A/D converter of the XC164 supports four different conversion modes. In the
standard Single Channel conversion mode, the analog level on a specified channel is
sampled once and converted to a digital result. In the Single Channel Continuous mode,
the analog level on a specified channel is repeatedly sampled and converted without
software intervention. In the Auto Scan mode, the analog levels on a prespecified
number of channels are sequentially sampled and converted. In the Auto Scan
Continuous mode, the prespecified channels are repeatedly sampled and converted. In
addition, the conversion of a specific channel can be inserted (injected) into a running
sequence without disturbing this sequence. This is called Channel Injection Mode.

The Peripheral Event Controller (PEC) may be used to automatically store the
conversion results into a table in memory for later evaluation, without requiring the
overhead of entering and exiting interrupt routines for each data transfer.

After each reset and also during normal operation the ADC automatically performs
calibration cycles. This automatic self-calibration constantly adjusts the converter to
changing operating conditions (e.g. temperature) and compensates process variations.

These calibration cycles are part of the conversion cycle, so they do not affect the normal
operation of the A/D converter. The calibration cycles after a conversion can be disabled,
so the overall conversion time is reduced again.

In order to decouple analog inputs from digital noise and to avoid input trigger noise
those pins used for analog input can be disconnected from the digital IO or input stages
under software control. This can be selected for each pin separately via register P5DIDIS
(Port 5 Digital Input Disable).

The Auto-Power-Down feature of the A/D converter minimizes the power consumption
when no conversion is in progress.

User’s Manual 2-22 V2.1, 2004-03
Architecture_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Architectural Overview

Asynchronous/Synchronous Serial Interfaces (ASC0/ASC1)

The Asynchronous/Synchronous Serial Interfaces ASCO/ASC1 (USARTS) provide serial
communication with other microcontrollers, processors, terminals or external peripheral
components. They are upward compatible with the serial ports of the Infineon 8-bit
microcontroller families and support full-duplex asynchronous communication and half-
duplex synchronous communication. A dedicated baud rate generator with a fractional
divider precisely generates all standard baud rates without oscillator tuning.

In asynchronous mode, 8- or 9-bit data frames (with optional parity bit) are transmitted
or received, preceded by a start bit and terminated by one or two stop bits. For
multiprocessor communication, a mechanism to distinguish address from data bytes has
been included (8-bit data plus wake-up bit mode). IrDA data transmissions up to
115.2 kbit/s with fixed or programmable IrDA pulse width are supported. An autobaud
detection unit allows to detect asynchronous data frames with its baudrate and mode
with automatic initialization of the baudrate generator and the mode control bits.

In synchronous mode, bytes (8 bits) are transmitted or received synchronously to a shift
clock which is generated by the ASCO/1.

The LSB is always shifted first. In both modes, transmission and reception of data is
FIFO-buffered (8 entries per direction). A loop-back option is available for testing
purposes. Five separate interrupt vectors are provided for transmit buffer, transmission,
reception, autobaud detection, and error handling.

A number of optional hardware error detection capabilities has been included to increase
the reliability of data transfers. A parity bit can automatically be generated on
transmission or be checked on reception. Framing error detection allows to recognize
data frames with missing stop bits. An overrun error will be generated, if the last
character received has not been read out of the receive buffer register at the time the
reception of a new character is complete.

Summary of Features

* Full-duplex asynchronous operating modes
— 8- or 9-bit data frames, LSB first, one or two stop bits, parity generation/checking
— Baudrate from 2.5 Mbit/s to 0.6 bit/s (@ 40 MHz)
— Multiprocessor mode for automatic address/data byte detection
— Support for IrDA data transmission/reception up to max. 115.2 kbit/s (@ 40 MHz)
— Loop-back capability
— Auto baudrate detection
* Half-duplex 8-bit synchronous operating mode at 5 Mbit/s to 406.9 bit/s (@ 40 MHz)
» Buffered transmitter/receiver with FIFO support (8 entries per direction)
* Loop-back option available for testing purposes
* Interrupt generation on transmitter buffer empty condition, last bit transmitted
condition, receive buffer full condition, error condition (frame, parity, overrun error),
start and end of an autobaud detection

User’s Manual 2-23 V2.1, 2004-03
Architecture_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Architectural Overview

High Speed Synchronous Serial Channels (SSC0/SSC1)

The High Speed Synchronous Serial Channels SSC0/SSC1 support full-duplex and half-
duplex synchronous communication. They may be configured so they interface with
serially linked peripheral components, full SPI functionality is supported.

A dedicated baud rate generator allows to set up all standard baud rates without
oscillator tuning.

The SSC transmits or receives characters of 2 ... 16 bits length synchronously to a shift
clock which can be generated by the SSC (master mode) or by an external master (slave
mode). The SSC can start shifting with the LSB or with the MSB and allows the selection
of shifting and latching clock edges as well as the clock polarity.

A loop-back option is available for testing purposes.

Three separate interrupt vectors are provided for transmission, reception, and error
handling.

A number of optional hardware error detection capabilities has been included to increase
the reliability of data transfers. Transmit error and receive error supervise the correct
handling of the data buffer. Phase error and baudrate error detect incorrect serial data.

Summary of Features

Master or Slave mode operation

Full-duplex or Half-duplex transfers

Baudrate generation from 20 Mbit/s to 305.18 bit/s (@ 40 MHz)

Flexible data format

— Programmable number of data bits: 2 to 16 bits

— Programmabile shift direction: LSB-first or MSB-first

— Programmable clock polarity: idle low or idle high

— Programmable clock/data phase: data shift with leading or trailing clock edge

* Loop back option available for testing purposes

e Interrupt generation on transmitter buffer empty condition, receive buffer full
condition, error condition (receive, phase, baudrate, transmit error)

e Three pin interface with flexible SSC pin configuration

User’s Manual 2-24 V2.1, 2004-03
Architecture_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Architectural Overview

On-Chip TwinCAN Module

The integrated TwinCAN module handles the completely autonomous transmission and
reception of CAN frames in accordance with the CAN specification V2.0 part B (active),
i.e. the on-chip TwinCAN module can receive and transmit standard frames with 11-bit
identifiers as well as extended frames with 29-bit identifiers.

Two Full-CAN nodes share the TwinCAN module’s resources to optimize the CAN bus
traffic handling and to minimize the CPU load. The module provides up to 32 message
objects, which can be assigned to one of the CAN nodes and can be combined to FIFO-
structures. Each object provides separate masks for acceptance filtering.

The flexible combination of Full-CAN functionality and FIFO architecture reduces the
efforts to fulfill the real-time requirements of complex embedded control applications.
Improved CAN bus monitoring functionality as well as the number of message objects
permit precise and comfortable CAN bus traffic handling.

Gateway functionality allows automatic data exchange between two separate CAN bus
systems, which reduces CPU load and improves the real time behavior of the entire
system.

The bit timing for both CAN nodes is derived from the master clock and is programmable
up to a data rate of 1 Mbit/s. Each CAN node uses two pins (configurable) to interface to
an external bus transceiver. The interface pins are assigned via software.

Summary of Features

CAN functionality according to CAN specification V2.0 B active

Data transfer rate up to 1 Mbit/s

Flexible and powerful message transfer control and error handling capabilities
Full-CAN functionality and Basic CAN functionality for each message object
32 flexible message objects

— Assignment to one of the two CAN nodes

— Configuration as transmit object or receive object

— Concatenation to a 2-, 4-, 8-, 16-, or 32-message buffer with FIFO algorithm
— Handling of frames with 11-bit or 29-bit identifiers

— Individual programmable acceptance mask register for filtering for each object
— Monitoring via a frame counter

— Configuration for Remote Monitoring Mode

* Up to eight individually programmable interrupt nodes can be used

e CAN Analyzer Mode for bus monitoring is implemented

User’s Manual 2-25 V2.1, 2004-03
Architecture_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Architectural Overview

Watchdog Timer

The Watchdog Timer represents one of the fail-safe mechanisms which have been
implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after a reset of the chip, and can be disabled
until the EINIT instruction has been executed (compatible mode), or it can be disabled
and enabled at any time by executing instructions DISWDT and ENWDT (enhanced
mode). Thus, the chip’s start-up procedure is always monitored. The software has to be
designed to restart the Watchdog Timer before it overflows. If, due to hardware or
software related failures, the software fails to do so, the Watchdog Timer overflows and
generates an internal hardware reset and pulls the RSTOUT pin low in order to allow
external hardware components to be reset.

The Watchdog Timer is a 16-bit timer, clocked with the system clock divided by
2/4/128/256. The high byte of the Watchdog Timer register can be set to a prespecified
reload value (stored in WDTREL) to allow further variation of the monitored time interval.
Each time it is serviced by the application software, the high byte of the Watchdog Timer
is reloaded and the low byte is cleared. Thus, time intervals between 13 us and 419 ms
can be monitored (@ 40 MHz).

The default Watchdog Timer interval after reset is 3.28 ms (@ 40 MHz).

User’s Manual 2-26 V2.1, 2004-03
Architecture_X41, V2.1

—

Infineon
ec no Ogles/

XC164-16 Derivatives
System Units (Vol. 1 of 2)

Architectural Overview

Parallel Ports

The XC164 provides up to 79 I/O lines which are organized into six input/output ports
and one input port. All port lines are bit-addressable, and all input/output lines are
individually (bit-wise) programmable as inputs or outputs via direction registers. The 1/0
ports are true bidirectional ports which are switched to high impedance state when
configured as inputs. The output drivers of some I/O ports can be configured (pin by pin)
for push/pull operation or open-drain operation via control registers. During the internal
reset, all port pins are configured as inputs (except for pin RSTOUT).

The edge characteristics (shape) and driver characteristics (output current) of the port
drivers can be selected via registers POCONX.

The input threshold of some ports is selectable (TTL or CMOS like), where the special
CMOS like input threshold reduces noise sensitivity due to the input hysteresis. The
input threshold may be selected individually for each byte of the respective ports.

All port lines have programmable alternate input or output functions associated with
them. All port lines that are not used for these alternate functions may be used as general
purpose 10 lines.

Table 2-3 Summary of the XC164’s Parallel Ports
Port Control Alternate Functions
PORTO Pad drivers Address/Data lines or data lines"
PORT1 Pad drivers Address lines?
Capture inputs or compare outputs,
Serial interface lines,
Fast external interrupt inputs
Port 3 Pad drivers, Timer control signals, serial interface lines,
Open drain, Optional bus control signal BHE/WRH,
Input threshold | System clock output CLKOUT (or FOUT),
Debug interface lines
Port 4 Pad drivers, Segment address lines®,
Open drain, Optional chip select lines
Input threshold | cAN interface lines?
Port 5 Input stage Analog input channels to the A/D converter,
disable Timer control signals

User’s Manual
Architecture_X41, V2.1

2-27

V2.1, 2004-03

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Architectural Overview

Table 2-3 Summary of the XC164’s Parallel Ports (cont’d)

Port Control Alternate Functions

Port 9 Pad drivers, Capture inputs or compare outputs
Open drain, CAN interface lines®
Input threshold

Port 20 Pad drivers, Bus control signals RD, WR/WRL, ALE,

Input threshold | External access enable pin EA,
Reset indication output RSTOUT

1)
2)
3) For more than 64 Kbytes of external resources.
4)

For multiplexed bus cycles.
For demultiplexed bus cycles.

Can be assigned by software.

User’s Manual 2-28 V2.1, 2004-03
Architecture_X41, V2.1

—

technologies - System Units (Vol. 1 of 2)
Architectural Overview
2.4 Clock Generation

The Clock Generation Unit uses a programmable on-chip PLL with multiple prescalers
to generate the clock signals for the XC164 with high flexibility. The master clock fy,c is
the reference clock signal, and is used for TwinCAN and is output to the external system.
The CPU clock fspy and the system clock fgyg are derived from the master clock either
directly (1:1) or via a 2:1 prescaler (fgys = fcpu =fuc/2)-

The on-chip oscillator can drive an external crystal or accepts an external clock signal.
The oscillator clock frequency can be multiplied by the on-chip PLL (by a programmable
factor) or can be divided by a programmable prescaler factor.

If the bypass mode is used (direct drive or prescaler) the PLL can deliver an independent
clock to monitor the clock signal generated by the on-chip oscillator. This PLL clock is
independent from the XTAL1 clock. When the expected oscillator clock transitions are
missing the Oscillator Watchdog (OWD) activates the PLL Unlock/OWD interrupt node
and supplies the CPU with an emergency clock, the PLL clock signal. Under these
circumstances the PLL will oscillate with its basic frequency.

The oscillator watchdog can be disabled by switching the PLL off. This reduces power
consumption, but also no interrupt request will be generated in case of a missing
oscillator clock.

2.5 Power Management Features

The basic power reduction modes (ldle and Power Down) are enhanced by additional
power management features (see below). These features can be combined to reduce
the controller’s power consumption to correspond to the application’s possible minimum.

¢ Basic power saving modes

Flexible clock generation

Flexible peripheral management (peripherals can be disabled and enabled)
e Periodic wake-up from Idle mode via RTC timer

The listed features provide effective means to realize standby conditions for the system
with an optimum balance between power reduction (standby time) and peripheral
operation (system functionality).

Basic Power Saving Modes

The XC164 can be switched into special operating modes (control via instructions)
where its power consumption (and functionality) is reduced.

Idle Mode stops the CPU while the peripherals can continue to operate.

Sleep Mode and Power Down Mode stop all clock signals and all operation (RTC may
optionally continue running). Sleep Mode can be terminated by external interrupt signals.

User’s Manual 2-29 V2.1, 2004-03
Architecture_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Architectural Overview

Flexible Clock Generation

The flexible clock generation system combines a variety of improved mechanisms (partly
user controllable) to provide the XC164 modules with clock signals. This is especially
important in power sensitive modes such as standby operation.

The power optimized oscillator generally reduces the amount of power which is
consumed in order to generate the clock signal within the XC164.

The clock system controls the distribution and the frequency of internal and external
clock signals. The user can reduce the XC164’s CPU clock frequency which drastically
reduces the consumed power.

External circuitry can be controlled via the programmable frequency output FOUT.

Flexible Peripheral Management

Flexible peripheral management provides a mechanism to enable and disable each
peripheral module separately. In each situation (such as several system operating
modes, standby, etc.) only those peripherals may be kept running which are required for
the specified functionality, for example, to maintain communication channels. All others
may be switched off. The registers of disabled peripherals can still be accessed.

Periodic Wake-up from Idle or Sleep Mode

Periodic wake-up from Idle mode or from Sleep mode combines the drastically reduced
power consumption in Idle/Sleep mode (in conjunction with the additional power
management features) with a high level of system availability. External signals and
events can be scanned (at a lower rate) by periodically activating the CPU and selected
peripherals which then return to powersave mode after a short time. This greatly reduces
the system’s average power consumption. ldle/Sleep mode can also be terminated by
external interrupt signals.

User’s Manual 2-30 V2.1, 2004-03
Architecture_X41, V2.1

—

technologies - System Units (Vol. 1 of 2)
Architectural Overview
2.6 On-Chip Debug Support (OCDS)

The On-Chip Debug Support system provides a broad range of debug and emulation
features built into the XC164. The user software running on the XC164 can thus be
debugged within the target system environment.

The OCDS is controlled by an external debugging device via the debug interface,
consisting of the IEEE-1149-conforming JTAG port and a break interface. The debugger
controls the OCDS via a set of dedicated registers accessible via the JTAG interface.
Additionally, the OCDS system can be controlled by the CPU, e.g. by a monitor program.
An injection interface allows the execution of OCDS-generated instructions by the CPU.

Multiple breakpoints can be triggered by on-chip hardware, by software, or by an
external trigger input. Single stepping is supported as well as the injection of arbitrary
instructions and read/write access to the complete internal address space. A breakpoint
trigger can be answered with a CPU-halt, a monitor call, a data transfer, or/and the
activation of an external signal.

The data transferred at a watchpoint (see above) can be obtained via the JTAG interface
or via the external bus interface for increased performance.

The debug interface uses a set of 6 interface signals (4 JTAG lines, 2 break lines) to
communicate with external circuitry. These interface signals occupy Port 3 pins while
they are activated.

Complete system emulation is supported by the New Emulation Technology (NET)
interface. Via this full-featured emulation interface (including internal buses, control,
status, and pad signals) the XC164 chip can be connected to a NET carrier chip.

The use of the XC164 production chip together with the carrier chip provides superior
emulation behavior, because the emulation system shows exactly the same functionality
as the production chip (use of the identical silicon).

User’s Manual 2-31 V2.1, 2004-03
Architecture_X41, V2.1

—

Infineon
ec no Ogles/

XC164-16 Derivatives
System Units (Vol. 1 of 2)

Architectural Overview

2.7 Protected Bits

The XC164 provides a special mechanism to protect bits which can be modified by the
on-chip hardware from being changed unintentionally by software accesses to related

bits (see also Section 4.8.2). The following bits are protected:

Table 2-4 XC164 Protected Bits

Register Bit Name Notes

GPT12E_T3CON |T3O0OTL GPT1 timer output toggle latches

GPT12E_T6CON |T60OTL GPT2 timer output toggle latches

ASCO0_CON REN ASCO receiver enable flag

ASC1_CON REN ASC1 receiver enable flag

SSCO_CON BSY SSCO busy flag

SSC0_CON BE, PE, RE, TE SSCO error flags

SSC1_CON BSY SSC1 busy flag

SSC1_CON BE, PE, RE, TE SSC1 error flags

ADC_CON/ ADST, ADCRQ ADC start flag/injection request flag

ADC_CTRO

TFR TFR.15, 14,13, 12 Class A trap flags

TFR TFR.7,4, 3, 2 Class B trap flags

PECISNC C7IR ... COIR All channel interrupt request flags

CC1_SEE SEE.15 ... SEE.O Single event enable bits

CC2_SEE SEE.15 ... SEE.O Single event enable bits

CC1_OuUT CC15I10 ... CCcolo Compare output bits

CC2_0uT CC1510 ... CCOIO Compare output bits

P1L P1L.7 Those bits of PORT1 used for CAPCOM2

P1H P1H.7-4, P1H.0 Those bits of PORT1 used for CAPCOM2

P9 P9.5 ... P9.0 All bits of Port 9 used for CAPCOM2

RTC_ISNC T14IR, Interrupt node sharing request flags
CNT3IR ... CNTOIR

CC1_CC15-0IC CC15IR ... CCOIR CAPCOM1 interrupt request flags

CC2_CC31-161C |CC31IR ... CC16IR | CAPCOM?2 interrupt request flags

CC1_T1-0IC TOIR, T1IR CAPCOMT1 timer interrupt request flags

CC2_T8-7I1C T7IR, T8IR CAPCOM2 timer interrupt request flags

CCU6_IC CIR CAPCOMBG interrupt request flag

User’s Manual

Architecture_X41, V2.1

2-32

V2.1, 2004-03

—

Infineon XC164-16 Derivatives
lechnologies System Units (Vol. 1 of 2)
Architectural Overview
Table 2-4 XC164 Protected Bits (cont’d)
Register Bit Name Notes
CCU6_EIC EIR CAPCOMBG error interrupt request flag
CCU6_T12IC T12IR CAPCOMBG6 timer T12 interrupt request flag
CCU6_T13IC T13IR CAPCOMBG6 timer T13 interrupt request flag
GPT12E_T6-2IC |T6IR ... T2IR GPT timer interrupt request flags
GPT12E_CRIC CRIR GPT2 CAPREL interrupt request flag
ADC_CIC ADCIR ADC end-of-conversion intr. request flag
ADC_EIC ADEIR ADC overrun interrupt request flag
ASCO_T(B)IC TIR, TBIR ASCO transmit (buffer) intr. request flags
ASCO_RIC, RIR, EIR ASCO receive/error interrupt request flags
ASCO_EIC
ASCO_ABIC ABIR ASCO autobaud interrupt request flags
ASC1_T(B)IC TIR, TBIR ASC1 transmit (buffer) intr. request flags
ASC1_RIC, RIR, EIR ASC1 receive/error interrupt request flags
ASC1_EIC
ASC1_ABIC ABIR ASC1 autobaud interrupt request flags
SSCO0_TIC, TIR, RIR SSCO transmit/receive intr. request flags
SSCO_RIC
SSCO_EIC EIR SSCO error interrupt request flag
SSC1_TIC, TIR, RIR SSC1 transmit/receive intr. request flags
SSC1_RIC
SSC1_EIC EIR SSC1 error interrupt request flag
PLLIC PLLIR PLL/OWD interrupt request flag
EOPIC EOPIR End-of-PEC interrupt request flag
CAN_7IC, CANZ7IR ... CANOIR | TwinCAN interrupt request flags
CAN_OIC
RTC_IC RTCIR RTC interrupt request flag
----- XX4IR ... XXO0IR “Unassigned node” interrupt request flags
User’s Manual 2-33 V2.1, 2004-03

Architecture_X41, V2.1

—

technologies - System Units (Vol. 1 of 2)
Memory Organization
3 Memory Organization

The memory space of the XC164 is configured in a “von Neumann” architecture. This
means that code and data are accessed within the same linear address space. All of the
physically separated memory areas, including internal ROM/Flash/OTP (where
integrated), internal RAM, the internal Special Function Register Areas (SFRs and
ESFRs), the internal 10 area, and external memory are mapped into one common
address space.

***** FF’FFFFl_| 'S
255...240
On-Chip 239...224
Program Memory E0°0000,
Areas 223...208
207...192
—————= C0’0000
A
191...176
175...160 -
A0’0000|_I =
159...144 ‘é
= 0|8
% External 143...128 , glo
8 Memory 80°0000, z =
< Area 127..112 = |0
7] o O |
glo TS
2% 111...96 <
=3 60°0000,, IS
oS 95...80 P
vl <
= 79...64
o) 40°0000,,
x
i External 63...48
10
Area 47...32
20’0000|_I
External 31...16
Memory
Area 15..0
\4) v
,,,,, 00 OOOOH A
Total Address Space
16 Mbytes, Segments 255...0
mc_xc16x_mmap.vsd

Figure 3-1 Address Space Overview

User’s Manual 3-1 V2.1, 2004-03
Memory_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Memory Organization

The XC164 provides a total addressable memory space of 16 Mbytes. This address
space is arranged as 256 segments of 64 Kbytes each, and each segment is again
subdivided into four data pages of 16 Kbytes each (see Figure 3-1).

Bytes are stored at even or odd byte addresses. Words are stored in ascending memory
locations with the low byte at an even byte address being followed by the high byte at
the next odd byte address. Double words (code only) are stored in ascending memory
locations as two subsequent words. Single bits are always stored in the specified bit
position at a word address. Bit position 0 is the least significant bit of the byte at an even
byte address, and bit position 15 is the most significant bit of the byte at the next odd
byte address. Bit addressing is supported for a part of the Special Function Registers, a
part of the internal RAM and for the General Purpose Registers.

/\/

XXXX6 H

15 | 14 « e+« Bits + - 8 | Xxxxdy
7 6 e+ Bitg ¢« 0 XXXX4H
Byte XXXX3H

Byte XXXX2H

Word (High Byte) Xxxx1H

Word (Low Byte) XXXX0 H

XxxxF H

/\/

MCD01996

Figure 3-2 Storage of Words, Bytes, and Bits in a Byte Organized Memory

Note: Byte units forming a single word or a double word must always be stored within
the same physical (internal, external, ROM, RAM) and organizational (page,
segment) memory area.

User’s Manual 3-2 V2.1, 2004-03
Memory_X41, V2.1

—

Infineon
ec no Ogles/

XC164-16 Derivatives
System Units (Vol. 1 of 2)

Memory Organization

3.1

All the various memory areas and peripheral registers (see Table 3-1) are mapped into
one contiguous address space. All sections can be accessed in the same way. The
memory map of the XC164 contains some reserved areas, so future derivatives can be
enhanced in an upward-compatible fashion.

Address Mapping

Table3-1 XC164 Memory Map"

Address Area Start Loc. |End Loc. |Area Size? |Notes

Flash register space FFFO00, |FFFFFF, |4 Kbytes 9

Reserved (Acc. trap) F80000, |FFEFFF, |<0.5Mbytes |Minus Flash regs
Reserved for PSRAM | E0’0800, |F7’FFFF, |< 1.5 Mbytes | Minus PSRAM
Program SRAM EO0’'0000, |EOO07FF, |2 Kbytes Maximum®
Reserved for pr. mem. |C2°0000, |DFFFFF, |<2 Mbytes |Minus Flash
Program Flash or ROM | C0’0000, |C1'FFFF, |128 Kbytes |-

Reserved BF'0000, |BFFFFF, |64 Kbytes -

External memory area |40°0000, |BE’FFFF, |<8 Mbytes |Minus res. seg.
External 10 area® 20°0800,; |3FFFFF, |<2 Mbytes |Minus TwinCAN
TwinCAN registers 20'0000, |2007FFy |2 Kbytes Accessed via EBC
External memory area | 01’0000, |1FFFFF, |<2 Mbytes |Minus segmentO
SFR area O0’FEOO, |OO'FFFF, |0.5 Kbyte -

Dual-Port RAM 00’F600, |OO0'FDFF, |2 Kbytes -

Reserved for DPRAM | 00’F200, |OO'F5FF, |1 Kbyte -

ESFR area 00’FO00, |OO0'F1FF, |0.5 Kbyte -

XSFR area 00’E000,, |OO'EFFF, |4 Kbytes -

Reserved 00'C800, |O00’'DFFF,, |6 Kbytes —

Data SRAM 00’C000, |O00’'C7FF, |2 Kbytes -

Reserved for DSRAM | 00’8000, |OO'BFFF, |16 Kbytes -

External memory area | 00’0000, |OO0’7FFF, |32 Kbytes -

1

a b~ W N

peripherals properly.

User’s Manual
Memory_X41, V2.1

)
)
) Not defined register locations return a trap code.
)
)

3-3

Accesses to the shaded areas generate external bus accesses.

This is the maximum implemented in the derivatives described in this manual.
Several pipeline optimizations are not active within the external 10 area. This is necessary to control external

The areas marked with “<” are slightly smaller than indicated, see column “Notes”.

V2.1, 2004-03

—

technologies - System Units (Vol. 1 of 2)
Memory Organization
3.2 Special Function Register Areas

The Special Function Registers (SFRs) controlling the system and peripheral functions
of the XC164 can be accessed via three dedicated address areas:
* 512-byte SFR area (located above the internal RAM: 00'FFFF ... 00'FE00,)

* 512-byte ESFR area (located below the internal RAM: 00’F1FF ... 00’F000,,)
* 4-Kbyte XSFR area (located below the ESFR area: 00'EFFF ... 00’'E000)

This arrangement provides upward compatibility with the derivatives of the C166 Family.

©
2 00'FFFF, —
cv 00°FE00,,
7]
DPRAM
OO’FGOOH
Reserved 2
© (@))
o , ©
:tik 00 F200H %
o 2|
5—, x OO’FOOOH s E
w > 5
EBC 00'EE00,, |5
Intr./PEC OO’ECOOH §
-
© OO’EAOOH
0
= CAPCOM6
> 00°E800,,
&
P 00’E600H
00’E400H
00’E200H
v OO’EOOOH v
mc_xc164_regareas.vsd

Figure 3-3 Special Function Register Mapping

Note: The upper 256 bytes of SFR area, ESFR area, and internal RAM are
bit-addressable (see hashed blocks in Figure 3-3).

User’s Manual 3-4 V2.1, 2004-03
Memory_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Memory Organization

Special Function Registers

The functions of the CPU, the bus interface, the 10 ports, and the on-chip peripherals of
the XC164 are controlled via a number of Special Function Registers (SFRs).

All Special Function Registers can be addressed via indirect and long 16-bit addressing
modes. The (word) SFRs and their respective low bytes in the SFR/ESFR areas can be
addressed using an 8-bit offset together with an implicit base address. However, this
does not work for the respective high bytes!

Note: Writing to any byte of an SFR causes the not addressed complementary byte to
be cleared.

The upper half of the SFR-area (00'FFFF ... 00'FF00,) and the ESFR-area (00'F1FF
... 00'F100y) is bit-addressable, so the respective control/status bits can be modified
directly or checked using bit addressing.

When accessing registers in the ESFR area using 8-bit addresses or direct bit
addressing, an Extend Register (EXTR) instruction is required beforehand to switch the
short addressing mechanism from the standard SFR area to the Extended SFR area.
This is not required for 16-bit and indirect addresses. The GPRs R15 ... RO are
duplicated, i.e. they are accessible within both register blocks via short 2-, 4-, or 8-bit
addresses without switching.

ESFR _SWITCH EXAMPLE:

EXTR #4 ;Switch to ESFR area for next 4 instr.
MOV ODP9, #dataleé ;ODP9 uses 8-bit reg addressing

BFLDL DP9, #mask, #data8 ;Bit addressing for bit fields

BSET DP1H.7 ;Bit addressing for single bits

MOV T8REL, R1 ; TBREL uses 16-bit mem address,

;R1 is duplicated into the ESFR space
; (EXTR is not required for this access)
e e ;The scope of the EXTR #4 instruction ..
;... ends here!
MOV T8REL, R1 ; TSREL uses 16-bit mem address,
;R1 is accessed via the SFR space

In order to minimize the use of the EXTR instructions the ESFR area mostly holds
registers which are mainly required for initialization and mode selection. Registers that
need to be accessed frequently are allocated to the standard SFR area, wherever
possible.

Note: The tools are equipped to monitor accesses to the ESFR area and will
automatically insert EXTR instructions, or issue a warning in case of missing or
excessive EXTR instructions.

Accesses to registers in the XSFR area use 16-bit addresses and require no specific
addressing modes or precautions.

User’s Manual 3-5 V2.1, 2004-03
Memory_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Memory Organization

General Purpose Registers

The General Purpose Registers (GPRs) use a block of 16 consecutive words either
within the global register bank or within one of the two local register banks. Bitfield BANK
in register PSW selects the currently active register bank. The global register bank is
mirrored to a section in the DPRAM, the Context Pointer (CP) register determines the
base address of the currently active global register bank section. This register bank may
consist of up to 16 Word-GPRs (RO, R1, ... R15) and/or of up to 16 byte-GPRs (RLO,
RHO, ... RL7, RH7). The sixteen byte-GPRs are mapped onto the first eight Word-GPRs
(see Table 3-2).

In contrast to the system stack, a register bank grows from lower towards higher address
locations and occupies a maximum space of 32 bytes. The GPRs are accessed via short
2-, 4-, or 8-bit addressing modes using the Context Pointer (CP) register as base
address for the global bank (independent of the current DPP register contents).
Additionally, each bit in the currently active register bank can be accessed individually.

Table 3-2 Mapping of General Purpose Registers to DPRAM Addresses

DPRAM Address | High Byte Registers |Low Byte Registers | Word Register
<CP> + 1E, — — R15

<CP> + 1Cy — — R14

<CP> + 1A, — — R13

<CP> + 18, — — R12

<CP> + 16, — — R11

<CP> + 14, — — R10

<CP> + 12 — — R9

<CP> + 104 — — R8

<CP> + OE RH7 RL7 R7

<CP> + 0Cy RH6 RL6 R6

<CP> + 0A, RH5 RL5 R5

<CP> + 08, RH4 RL4 R4

<CP> + 06, RH3 RL3 R3

<CP> + 04, RH2 RL2 R2

<CP> + 02, RH1 RL1 R1

<CP> + 00y RHO RLO RO

User’s Manual 3-6 V2.1, 2004-03

Memory_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Memory Organization

The XC164 supports fast register bank (context) switching. Multiple global register banks
can physically exist within the DPRAM at the same time. Only the global register bank
selected by the Context Pointer register (CP) is active at a given time, however.
Selecting a new active global register bank is simply done by updating the CP register.
A particular Switch Context (SCXT) instruction performs register bank switching by
automatically saving the previous context and loading the new context. The number of
implemented register banks (arbitrary sizes) is limited only by the size of the available
DPRAM.

Note: The local GPR banks are not memory mapped and the GPRs cannot be accessed
using a long or indirect memory address.

PEC Source and Destination Pointers

The source and destination address pointers for data transfers on the PEC channels are
located in the XSFR area.

Each channel uses a pair of pointers stored in two subsequent word locations with the
source pointer (SRCPx) on the lower and the destination pointer (DSTPx) on the higher
word address (x = 7 ... 0). An additional segment register stores the associated source
and destination segments, so PEC transfers can move data from/to any location within
the complete addressing range.

Whenever a PEC data transfer is performed, the pair of source and destination pointers
(selected by the specified PEC channel number) accesses the locations referred to by
these pointers independently of the current DPP register contents.

If a PEC channel is not used, the corresponding pointer locations can be used for other
purposes.

For more details about the use of the source and destination pointers for PEC data
transfers see Section 5.4.

Note: Writing to any byte of the PEC pointers causes the not addressed complementary
byte to be cleared.

User’s Manual 3-7 V2.1, 2004-03
Memory_X41, V2.1

—

Infineon
ec no Ogles/

XC164-16 Derivatives
System Units (Vol. 1 of 2)

3.3 Data Memory Areas

The XC164 provides two on-chip RAM areas for data storage:

e The Dual Port RAM (DPRAM) can be used for global register banks (GPRs), system
stack, storage of variables and other data, in particular for MAC operands.
e The Data SRAM (DSRAM) can be used for system stack (recommended), storage

of variables and other data.

Memory Organization

Note: Data can also be stored in the PSRAM (see Section 3.4). However, the data
memory areas provide the fastest access.

SFRs

DPRAM

DPRAM

DSRAM

Res. for DPRAM

ESFRs

XSFRs

Reserved

DSRAM

00 FFFF

00 F600,

00 FOOOH

00'E800

00'E000y

00 D800H

00'DO00

00'C800y,

00'C000

16 Kbytes
Data Page 3

v

mc_xc164_dataramvsd

Figure 3-4

User’s Manual
Memory_X41, V2.1

On-Chip Data RAM Mapping

3-8

V2.1, 2004-03

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Memory Organization

Dual-Port RAM (DPRAM)

The XC164 provides 2 Kbytes of DPRAM (00’F600,, ... 00’FDFF,). Any word or byte
data in the DPRAM can be accessed via indirect or long 16-bit addressing modes, if the
selected DPP register points to data page 3. Any word data access is made on an even
byte address. The highest possible word data storage location in the DPRAM is
00’FDFE,,.

For PEC data transfers, the DPRAM can be accessed independent of the contents of the
DPP registers via the PEC source and destination pointers.

The upper 256 bytes of the DPRAM (00’FDO00,, through 00’FDFF,) are provided for
single bit storage, and thus they are bitaddressable (see hashed block in Figure 3-4).

Note: Code cannot be executed out of the DPRAM.

An area of 3 Kbytes is dedicated to DPRAM (00’F200, ... 00'FDFF,). The locations
without implemented DPRAM are reserved.

Data SRAM (DSRAM)

The XC164 provides 2 Kbytes of DSRAM (00’C000,, ... 00’C7FF,). Any word or byte
data in the DSRAM can be accessed via indirect or long 16-bit addressing modes, if the
selected DPP register points to data page 3. Any word data access is made on an even
byte address. The highest possible word data storage location in the DSRAM is
00’C7FE,.

For PEC data transfers, the DSRAM can be accessed independent of the contents of the
DPP registers via the PEC source and destination pointers.

Note: Code cannot be executed out of the DSRAM.

An area of 20 Kbytes is dedicated to DSRAM (00’8000 ... 00'CFFF). The locations
without implemented DSRAM are reserved.

User’s Manual 3-9 V2.1, 2004-03
Memory_X41, V2.1

—

technologies - System Units (Vol. 1 of 2)
Memory Organization
3.4 Program Memory Areas

The XC164 provides two on-chip program memory areas for code/data storage:

* The Program Flash/ROM stores code and constant data. Flash memory is (re-)
programmed by the application software, ROM is mask-programmed in the factory.
* The Program SRAM (PSRAM) stores temporary code sequences and other data.
For example higher level bootloader software can be written to the PSRAM and then

be executed to program the on-chip Flash memory.

)

FFFFFF,
FF'F000,,

—>

Flash Reg.

Reserved F0'0000,

E0’0800|_|
E0°0000},

’<

PSRAM

Reserved DO’OOOOH

C2'0000
CO’OOOOI_|

Flash/ROM

4

<

n

L‘A

L‘A

A

»

y

4 Mbytes

Segments 255 ...

192

‘7

mc_xc16x_progmem.vsd

Figure 3-5 On-Chip Program Memory Mapping

User’s Manual 3-10
Memory_X41, V2.1

V2.1, 2004-03

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Memory Organization

Program/Data SRAM (PSRAM)

The XC164 provides 2 Kbytes of PSRAM (E0’0000,, ... EO’07FF,). The PSRAM
provides fast code execution without initial delays. Therefore, it supports non-sequential
code execution, for example via the interrupt vector table.

Any word or byte data in the PSRAM can be accessed via indirect or long 16-bit
addressing modes, if the selected DPP register points to data page 896. Any word data
access is made on an even byte address. The highest possible word data storage
location in the PSRAM is EQ’07FE,,.

For PEC data transfers, the PSRAM can be accessed independent of the contents of the
DPP registers via the PEC source and destination pointers.

Any data can be stored in the PSRAM. Because the PSRAM is optimized for code
fetches, however, data accesses to the data memories provide higher performance.

Note: The PSRAM is not bitaddressable.

An area of 1.5 Mbytes is dedicated to PSRAM (E0’'0000,, ... F7’FFFF,). The locations
without implemented PSRAM are reserved.

Non-Volatile Program Memory (Flash/ROM)

The XC164 provides 128 Kbytes of program Flash or ROM (C0’0000, ... C1’FFFF).
Code and data fetches are always 64-bit aligned, using byte select lines for word and
byte data. Any word or byte data in the program memory can be accessed via indirect or
long 16-bit addressing modes, if the selected DPP register points to one of the respective
data pages. Any word data access is made on an even byte address. The highest
possible word data storage location in the program memory is C1’FFFE,,.

For PEC data transfers, the program memory can be accessed independent of the
contents of the DPP registers via the PEC source and destination pointers.

Note: The program memory is not bitaddressable.

An area of 2 Mbytes is dedicated to program memory (C0’0000 ... DF'FFFF,). The
locations without implemented program memory are reserved.

User’s Manual 3-11 V2.1, 2004-03
Memory_X41, V2.1

—

cchnologies - ystem Units (Vol. 1 of 2)
Memory Organization
3.5 System Stack

The system stack may be defined anywhere within the XC164’s memory areas (including
external memory).

For all system stack operations the respective stack memory is accessed via a 24-bit
stack pointer. The Stack Pointer (SP) register provides the lower 16 bits of the stack
pointer (stack pointer offset), the Stack Pointer Segment (SPSEG) register adds the
upper 8 bits of the stack pointer (stack segment). The system stack grows downward
from higher towards lower locations as it is filled. Only word accesses are supported to
the system stack.

Register SP is decremented before data is pushed on the system stack, and
incremented after data has been pulled from the system stack. Only word accesses are
supported to the system stack.

By using register SP for stack operations, the size of the system stack is limited to
64 Kbytes. The stack must be located in the segment defined by register SPSEG.

The stack pointer points to the latest system stack entry, rather than to the next available
system stack address.

A stack overflow (STKOV) register and a stack underflow (STKUN) register are provided
to control the lower and upper limits of the selected stack area. These two stack
boundary registers can be used both for protection against data corruption.

For best performance it is recommended to locate the stack to the DPRAM or to the
DSRAM. Using the DPRAM may conflict with register banks or MAC operands.

User’s Manual 3-12 V2.1, 2004-03
Memory_X41, V2.1

—

technologies - System Units (Vol. 1 of 2)
Memory Organization
3.6 10 Areas

The following areas of the XC164’s address space are marked as |10 area:

e The external 10 area is provided for external peripherals (or memories) and also
comprises the on-chip LXBus-peripherals, such as the TwinCAN module.
It is located from 20’0000,, to 3F’FFFF, (2 Mbytes).

¢ The internal 10 area provides access to the internal peripherals and is split into three
blocks:
— The SFR area, located from 00'FEOO, to 00’'FFFF (512 bytes)
— The ESFR area, located from 00'’FO00, to 00’F1FF (512 bytes)
— The XSFR area, located from 00’'E000, to 00’'EFFF,, (4 Kbytes)

Note: The external 10 area supports real byte accesses. The internal 10 area does not
support real byte transfers, the complementary byte is cleared when writing to a
byte location.

The 10 areas have special properties, because peripheral modules must be controlled
in a different way than memories:

e Accesses are not buffered and cached, the write back buffers and caches are not
used to store 1O read and write accesses.

* Speculative reads are not executed, but delayed until all speculations are solved (e.g.
prefetching after conditional branches).

* Data forwarding is disabled, an 10 read access is delayed until all IO writes pending
in the pipeline are executed, because peripherals can change their internal state after
a write access.

User’s Manual 3-13 V2.1, 2004-03
Memory_X41, V2.1

—

technologies - System Units (Vol. 1 of 2)
Memory Organization
3.7 External Memory Space

The XC164 is capable of using an address space of up to 16 Mbytes. Only parts of this
address space are occupied by internal memory areas or are reserved. A total area of
approximately 12 Mbytes references external memory locations. This external memory
is accessed via the XC164’s external bus interface.

Selectable memory bank sizes are supported: The maximum size of a bank in the
external memory space depends on the number of activated address bits. It can vary
from 64 Kbytes (with A15 ... 0 activated) to 12 Mbytes (with A23 ... 0 activated). The
logical size of a memory bank and its location in the address space is defined by
programming the respective address window. It can vary from 4 Kbytes to 12 Mbytes.

* Non-segmented mode:

— 64 Kbytes with A15 ... AO on PORTO or PORT1
* 1-bit segmented mode:

— 128 Kbytes with A16 on Port 4

— and A15 ... AO on PORTO or PORT1
e 2-bit ... 7-bit segmented mode:

— with Ax ... A16 on Port 4

— and A15 ... A0 on PORTO or PORT1
* 8-bit segmented mode:

— 12 Mbytes with A23 ... A16 on Port 4

— and A15 ... AO on PORTO or PORT1

Each bank can be directly addressed via the address bus, while the programmable chip
select signals can be used to select various memory banks.

The XC164 also supports four different bus types:

* Multiplexed 16-bit Bus with address and data on PORTO (Default after Reset)
* Multiplexed 8-bit Bus with address and data on PORTO/POL

e Demultiplexed 16-bit Bus with address on PORT1 and data on PORTO

e Demultiplexed 8-bit Bus with address on PORT1 and data on POL

Memory model and bus mode are preselected during reset by pin EA and PORTO pins.
For further details about the external bus configuration and control please refer to
Chapter 9.

External word and byte data can only be accessed via indirect or long 16-bit addressing
modes using one of the four DPP registers. There is no short addressing mode for
external operands. Any word data access is made to an even byte address.

For PEC data transfers the external memory can be accessed independent of the
contents of the DPP registers via the PEC source and destination pointers.

Note: The external memory is not bitaddressable.

User’s Manual 3-14 V2.1, 2004-03
Memory_X41, V2.1

—

technologies - System Units (Vol. 1 of 2)
Memory Organization
3.8 Crossing Memory Boundaries

The address space of the XC164 is implicitly divided into equally sized blocks of different
granularity and into logical memory areas. Crossing the boundaries between these
blocks (code or data) or areas requires special attention to ensure that the controller
executes the desired operations.

Memory Areas are partitions of the address space assigned to different kinds of
memory (if provided at all). These memory areas are the SFR areas, the on-chip
program or data RAM areas, the on-chip ROM/Flash/OTP (if available), the on-chip
LXBus-peripherals (if integrated), and the external memory.

Accessing subsequent data locations which belong to different memory areas is no
problem. However, when executing code, the different memory areas must be switched
explicitly via branch instructions. Sequential boundary crossing is not supported and
leads to erroneous results.

Note: Changing from the external memory area to the on-chip RAM area takes place
within segment 0.

Segments are contiguous blocks of 64 Kbytes each. They are referenced via the Code
Segment Pointer CSP for code fetches and via an explicit segment number for data
accesses overriding the standard DPP scheme.

During code fetching, segments are not changed automatically, but rather must be
switched explicitly. The instructions JMPS, CALLS and RETS will do this.

In larger sequential programs, make sure that the highest used code location of a
segment contains an unconditional branch instruction to the respective following
segment to prevent the prefetcher from trying to leave the current segment.

Data Pages are contiguous blocks of 16 Kbytes each. They are referenced via the data
page pointers DPP3 ... DPPO and via an explicit data page number for data accesses
overriding the standard DPP scheme. Each DPP register can select one of the possible
1024 data pages. The DPP register which is used for the current access is selected via
the two upper bits of the 16-bit data address. Therefore, subsequent 16-bit data
addresses which cross the 16-Kbyte data page boundaries will use different data page
pointers, while the physical locations need not be subsequent within memory.

User’s Manual 3-15 V2.1, 2004-03
Memory_X41, V2.1

—

technologies - System Units (Vol. 1 of 2)
Memory Organization
3.9 The On-Chip Program Flash Module

The XC164 incorporates 128 Kbytes of embedded Flash memory? (starting at location
C0’0000,,, see Figure 3-5) for code or constant data. It is operated from the 5V pad
supply and requires no additional programming voltage. The on-chip voltage generators
require a power stabilization time of approx. 250 us. The Flash array is organized in six
sectors of 4 x 8 Kbytes, 1 x 32 Kbytes, and 1 x 64 Kbytes. It combines the advantages
of very fast read accesses with protected but simple writing algorithms for programming
and erasing. The 64-bit code read accesses realize maximum CPU performance by
fetching two double word instructions (or four single word instructions) in a single access
cycle.

Data integrity is enhanced by an error correction code enabling dynamic correction of
single bit errors. Additionally, special margin checks are provided to detect and correct
problematic bits before they lead to actual malfunctions.

All Flash operations are controlled by command sequences (according to the JEDEC
single-power-supply Flash standard). The algorithms for programming and erasing are
executed automatically by the internal Flash state control machine. This avoids
inadvertent destruction of the Flash contents at a reasonably low software overhead.
Command sequences consist of subsequent write (or read) accesses to virtual locations
within the Flash space or the Flash register space. The virtual Flash locations are
defined by special addresses (see command sequence table).

For optimized programming efficiency, paging mode (burst mode) allows 128 bytes to be
loaded into a page buffer with fast CPU accesses before this buffer is programmed into
the Flash with one single store command (2 ms typical®). Each sector can be erased
separately (200 ms typical?).

Note: Erased Flash memory cells contain all ‘0’s, contrary to standard EPROMSs.

Security is provided by a general read/write protection (complete Flash array) and a
sector-specific® write protection. The temporary disabling of these hardware protection
features is secured with a password check sequence. The lock information and the
keywords used for the password check sequence are stored apart from the user’s code
and data in a separate security sector (see Section 3.9.4).

A dedicated Flash status register returns global and sector-specific status information.
The correct execution of an operation and the general status of the Flash module can be
checked via the Flash status register at any time.

The physical address range of the Flash module covers byte addresses from 0°0000, to
1’FFFF,. These physical addresses are mapped to the XC164’s program memory area

1) The Flash is provided in the Flash-derivatives of the XC164 only, of course.
2) For exact parameters please refer to the data sheet.
3) For write protection two 8-Kbyte sectors are combined to one lockable 16-Kbyte section.

User’s Manual 3-16 V2.1, 2004-03
Memory_X41, V2.1

—

Infineon
ec no Ogles/

XC164-16 Derivatives
System Units (Vol. 1 of 2)

Memory Organization

starting at C0’0000,,. Also the separate security sector is mapped to this area. Access
conflicts are avoided by special security commands.

In-System-Programming is supported by the automatic program/erase algorithms and
the large page buffer, which may be filled by a programming routine executed out of the
Flash memory itself. During the actual program/erase algorithm Flash read accesses are
stalled. Also completely erased Flash modules can be programmed within the system.
The built-in bootstrap loader can load an initial programming routine via the serial
interface, which in turn can then program the Flash module. This is useful for the initial
programming (virgin Flash) as well as in case of a problem (e.g. power failure) during
reprogramming, when no safety routines are provided.

Note: Accesses to a protected Flash are totally disabled during bootstrap mode. Before
any program/erase operation the protection must be temporarily disabled using
the correct password sequence.

DF'FFFF r'y
Segments
196 ... 223
C4’0000|_I
Segment 195
CS’OOOOH §
0 |<<
2l=
Segment 194 s g
NG
<
1 LL
vy 1’FFFF|_| ***** c2 0000y
o 64 Kbytes e Segment 193
3=
Ed B
> O
gl= o000, }b—— £ C1°0000
sl < H H
[72)
a 2 32 Kbytes —>
8 Kbvies —— Segment 192
8 Kbytes —_
8 Kbytes —_
¥ 0°0000,, 8 Kbytes e C0°0000,, — Y-
Physical Flash Sectors Program Memory Location
Address (Segments)
mc_xc16x_flashmap.vsd

Figure 3-6 Mapping of the On-Chip Flash Module Sectors

User’s Manual 3-17 V2.1, 2004-03
Memory_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Memory Organization

3.9.1 Flash Operating Modes

Two basic operating modes of the on-chip Flash module can be distinguished:

e Standard read mode: code and data can be read from the Flash module
e Command mode: the Flash module executes a previously defined command

Standard Read Mode

In standard read mode (the normal operating mode) the Flash memory appears like a
standard ROM, allowing code and data accesses in any addressing mode.

Standard read mode is entered in the following cases:

* After the deactivation of the system reset (after power stabilization)

* After execution of the reset command, if no program or erase operation is active
e After every completed command execution (program, erase, etc.)

* When a command sequence error is detected

* When a protection violation is detected (program or erase a protected sector)

Note: Standard read mode is indicated by status bit BUSY = ‘0’.

Standard read mode is terminated when the last command of a command sequence
is decoded and a Flash array operation is started (program or erase). Therefore, all steps
of a command sequence before the last command (in particular the loading of the page
buffer) can be executed by code read from the Flash module itself.

Each read access to the Flash memory activates the automatic error detection. Double-
bit errors are detected and indicated, single-bit errors are detected, indicated, and
automatically corrected (see Section 3.9.3).

Note: Single bit errors can be located and avoided by a margin check operation.

Command Mode

All Flash operation except for standard read operations are initiated by command
sequences written to the (virtual) Flash command register (a location within the Flash
space). Protected commands additionally require four passwords for validation.

Command mode is entered after the last command of a command sequence has been
written. For all other command sequences, which activate a Flash array operation such
as erase sector, the command execution and thus the command mode remains active
for a defined time. While in command mode (busy) read accesses to the Flash array are
delayed until the Flash module returns to standard read mode.

Note: Command mode is indicated by status bit BUSY = ‘1.
Command mode is terminated by the correct execution of the command or by an error
condition as indicated in the status register.

Command sequences not starting Flash operations (e.g. Enter Page Mode) are
executed immediately and command mode is not entered.

User’s Manual 3-18 V2.1, 2004-03
Memory_X41, V2.1

—

technologies - System Units (Vol. 1 of 2)
Memory Organization
3.9.2 Command Sequences

All operations besides normal read operations are initiated and controlled by command
sequences written to the Flash state machine. The different write cycles of command
sequences define the intended command, but also establish a fail-safe mechanism to
protect against inadvertent operations. Commands not directly controlling Flash array
operations are single cycle commands for performance reasons, commands affecting
the Flash array require several cycles, commands affecting security issues require a
64-bit security code (four passwords) to be accepted. Command cycles need not be
consecutively received (pauses allowed).

Command sequences can be performed simultaneously to instruction fetch operations,
so instructions for command sequences also can be executed out of the on-chip Flash,
as long as the Flash module is in read mode and not executing an erase or programming
operation. Command sequences for polling the status register are allowed in any state,
also during erase and programming operations, if they are executed out of memory
outside the Flash module. Otherwise, instruction fetching is stalled.

Writing incorrect address and data values or writing them in the improper sequence will
abort the intended operation, reset the module to read mode, and set the sequence error
flag in the status register.

Read Status commands address the separate Flash register space and do not require
command sequences. Register write cycles are only executed with a command cycle.

Programming operations are supported by a 128-byte page buffer which can be
loaded with maximum speed, and is then programmed with one single command
sequence. Programming is done in three steps:

e |Initialize the page buffer with the Enter Page Mode command (this also defines the
target page address).

* Load the page buffer with consecutive Load Page command (the page buffer offset
is incremented automatically).

* Program the complete buffer with the Write Page command.

Erase operations clear all bits of a selected sector or of a 256-byte wordline. Erase
command sequences include the address of the target sector or wordline.

After being requested the program/erase operation is executed automatically and
requires no additional user control. The operation itself and its termination are indicated
by status flags. A Power Down request is delayed until the termination of the
program/erase operation. A reset aborts the program/erase operation within the power
stabilization time, indicated by an operation error (OPER) in the Flash status register.

The three tables below summarize the implemented command sequences for:

* organizational Flash accesses (Table 3-3),
e programming and erasing (Table 3-4),
e protection control (Table 3-5).

Note: Each command sequence lists the required address (A =...) and data (D = ...).

User’s Manual 3-19 V2.1, 2004-03
Memory_X41, V2.1

—

Infineon
ec no Ogles/

XC164-16 Derivatives
System Units (Vol. 1 of 2)

Organizational Commands

Memory Organization

Table 3-3 Command Sequence Definitions (Organizational Accesses)
9 |Reset to Read Clear Status Read Flash Write Margin
O .
5- Mode Status or Margin
1 A = CxX'xxAA, A = CxX’xxAA, A =RLOC A = CxX’xxAAy
D = xxFOy D = xxF5, D = <status> D = xxFA,
2 - - - A = FF’FOOC
D = margin
Notes:

RLOC is the respective register offset (rr) within the Flash register area starting at
FF’FO00, (FF’FOrry).

<status> is the returned status word.

margin is the control word used for margin control.

The shown virtual address (Cx’xxAA) must point to the Flash space (e.g. CO’00AA,).

The “Read Flash status” command may be executed during command mode in order to
check the BUSY bit of the Flash module.

The Reset To Read command aborts not completed command sequences and clears
the error flags in the status register FSR. The reset command can be issued at any point
during the command sequence, except for parts of the password check sequence. It
does not terminate command mode, i.e. abort busy state.

The Clear Status command clears the error flags and the write status bits PROG and
ERASE (the hardware-controlled indication flags are not affected). The clear status
command is only accepted in Read Mode and otherwise generates a sequence error.

The Read Register command returns the contents of the following registers:

* The Flash Status Register FSR providing general Flash status information.
* The Protection Configuration Register PROCON indicating the protected sectors.
* The Margin Control Register MAR indicating the selected Flash read margin.

The Write Margin Register command is used for verify operations and for user-
controlled refresh operations to identify and correct problematic bits (see Section 3.9.3).

User’s Manual 3-20
Memory_X41, V2.1

V2.1, 2004-03

—

Infineon
ec no Ogles/

XC164-16 Derivatives
System Units (Vol. 1 of 2)

Program/Erase Commands

Memory Organization

Table 3-4 Command Sequence Definitions (Programming & Erasing)

9 | Enter Page Load Page Write Page® | Erase Erase

:>;. Mode" Data Word? Sector" Wordline"

1 A = Cx'xxAA, |A=CxxxF2, |A=CxxxAA; |A=CxxxAA,; |A =Cx'xxAA,
D = xx504 D = WDAT D = xxA0, D = xx80y4 D = xx804

2 A =WLOC - A = Cx'xx5A, |A=Cxxx54, |A=Cxxx54,
D = xxAA, D = xxAA, D = xxAA, D = xxAA,

3 |- — = A =SLOC A =WLA

D = xx33y D = xx03y,

1) While protection is enabled, this command sequence is rejected.
2) Words written in excess of the buffer capacity of 128 bytes are lost.
3) This command sequence is only accepted if page mode has been entered before.

Notes:

WLOC is the first (lowest) location of the 128-byte block to which the 128-byte buffer
shall be written, e.g. CO’AB80, or CO’AC00, (128-byte boundary).

WDAT is the data word which shall be stored in the buffer.

SLOC is the first (lowest) location within the target sector, e.g. C0’6000, for sector 3.
WLA is the first (lowest) location of the 256-byte wordline to be erased, e.g. C1’FF00,
for the uppermost 256 bytes (top of sector 5).

The shown virtual addresses (Cx’xx..;) must point to the Flash space (e.g. CO'00AA,).

The “Read Flash status” command may be executed during command mode in order to
check the BUSY bit of the Flash module.

Caution: Writing to a Flash page (space for the 128-byte buffer) more than once
before erasing may destroy data stored in neighbor cells! This is especially important for
programming algorithms that do not write to sequential locations.

The Enter Page Mode command prepares the programming of a 128-byte page by
clearing the page buffer and initializing the internal word assembly pointer. Bit PAGE in
the status register FSR is set to indicate this. Issuing the Enter Page Mode command
during page mode aborts the current operation and starts a new page operation. The
data written to the page buffer during the aborted page operation are lost. The Enter
Page Mode command also defines the location of the 128-byte page to be programmed.

Note: The Enter Page Mode command is only accepted while protection is disabled.

User’s Manual 3-21

Memory_X41, V2.1

V2.1, 2004-03

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Memory Organization

The Load Page Data Word command adds the accompanying data word to the page
buffer. The offset within the page buffer is determined by the internal buffer pointer which
is incremented after each load operation. Data words written in excess of the buffer
capacity of 128 bytes are lost (no error indicated).

Note: The Load Page Data Word command is only accepted while page mode is active.

The Write Page command writes (programs) the contents of the 128-byte page buffer
(including the error correction code) to the Flash array. The address of the programmed
page is defined by the preceding Enter (Security) Page Mode command.

After the Write Page command the Flash module enters command mode, indicated by
PAGE =0, PROG = 1, BUSY = 1. Read accesses to the Flash module are delayed until
command mode is terminated. The programming operation itself is executed
automatically and requires no additional user control.

If a security page is written the new protection configuration (including keywords or
protection confirmation code) is valid directly after execution of this command.

Note: The Write Page command is only accepted while page mode is active.

The Erase Sector command clears all bits within the selected sector (see SLOC).

After the Erase Sector command the Flash module enters command mode, indicated by
ERASE =1, BUSY = 1. Read accesses to the Flash module are delayed until command
mode is terminated. The erase operation itself is executed automatically and requires no
additional user control.

Note: The Erase Sector command is only accepted while protection is disabled.
The Erase Wordline command clears all bits within the selected 256-byte wordline (see
WLA).

After the Erase Wordline command the Flash module enters command mode, indicated
by ERASE = 1, BUSY = 1. Read accesses to the Flash module are delayed until
command mode is terminated. The erase operation itself is executed automatically and
requires no additional user control.

Note: The Erase Wordline command is only accepted while protection is disabled.

User’s Manual 3-22 V2.1, 2004-03
Memory_X41, V2.1

—

Infineon
ec no Ogles/

XC164-16 Derivatives
System Units (Vol. 1 of 2)

Protection Control Commands

Memory Organization

Table 3-5 Command Sequence Definitions (Protection Control)
o Disable Read | Disable Write | Re-Enable Erase Enter
o |Protection Protection Protection Security Security Page
o Wordline" Mode"
1 A =Cxxx3Cy |A=Cxxx3Cy |A =CxxxBE, |A =CxxxAA, |A =Cx'xxAA,
D = xx004 D = xx004 D = xx5E, D = xx80y4 D = xx55,
2 A =Cx'xx54,, |A=Cxxx54, |- A =Cx'xx54,, |A=SECLOC
D =PW1 D =PW1 D = xxA5 D = xxAA,
3 A = CxX'xxAA, | A =CxxxAA, |- A =SECWLA |-
D =PW2 D =PW2 D = xx53y,
4 A =Cx'xx54,; |A=Cxxx54, |- - -
D =PW3 D =PW3
5 A = CxX'xxAA, | A =CxXxxAA, |- — —
D =PW4 D =PW4
6 A =Cx'xx5A,; |A=Cxxx5A, |- — —
D = xx55y D = xx05y

1) While protection is enabled, this command sequence is rejected.

Note: A Reset-To-Read command cannot be executed while the 2" or the 4" password
is expected. In this case the command is taken as a password.

Notes:

SECLOC is the first (lowest) location of the 128-byte block within the security sector to
which the 128-byte buffer shall be written, e.g. C0’0080, or C0’0100,,.

SECWLA is the first (lowest) location of the 256-byte security wordline to be erased, e.g.
C0’0100y for the upper 256-byte wordline.

PWhn is one of the four passwords building the 64-bit security code (n=1 ... 4).

The shown virtual addresses (Cx’xx..;) must point to the Flash space (e.g. CO'00AA).

The “Read Flash status” command may be executed during command mode in order to
check the BUSY bit of the Flash module.

The Disable Read Protection command temporarily disables the general Flash read
protection (including the general write protection), indicated by PRODI = 1. Read
protection remains disabled until the execution of the Re-Enable Protection command or
until the next reset.

While read protection is disabled, Flash read accesses including injected OCDS
instructions are executed. Program/Erase operations can be executed as long as the
respective sector is not locked by a sector-specific write protection.

User’s Manual 3-23

Memory_X41, V2.1

V2.1, 2004-03

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Memory Organization

Note: This command sequence can also be used to verify the programmed keywords
before the protection is locked with the confirmation. A wrong keyword is indicated
by bit PROER in the Flash Status Register FSR.

This is a protected command sequence requiring the 64-bit security code (four user-
defined passwords) for validation (see Section 3.9.4).

The Disable Sector Write Protection command temporarily disables the sector-
specific write protection for all write-protected sectors, indicated by SUL =1. Write
protection remains disabled until the execution of the Re-Enable Protection command or
until the next reset.

While write protection is disabled, all Flash operations can be executed as long as the
respective sector is not locked by the general read/write protection.

Note: This command sequence can also be used to verify the programmed keywords
before the protection is locked with the confirmation. A wrong keyword is indicated
by bit PROER in the Flash Status Register FSR.

This is a protected command sequence requiring the 64-bit security code (four user-
defined passwords) for validation (see Section 3.9.4).

The Re-Enable Protection command immediately resumes all installed but temporarily
disabled protection features (general read/write protection and/or sector-specific write
protection).

The Erase Security Wordline command clears all bits within the selected wordline
(see SECLOC).

After the Erase Security Wordline command the Flash module enters command mode,
indicated by ERASE = 1, BUSY = 1. Read accesses to the Flash module are delayed
until command mode is terminated. The erase operation itself is executed automatically
and requires no additional user control.

After the erase operation, the protection configuration (including keywords or protection
confirmation code) is valid directly after execution of this command (see Section 3.9.4).

Note: The Erase Security Wordline command is only accepted while protection is
disabled.

The Enter Security Page Mode command prepares the programming of a 128-byte
page within the security sector by clearing the page buffer and initializing the internal
word assembly pointer. Bit PAGE in the status register FSR is set to indicate this. Issuing
the Enter Security Page Mode command during page mode aborts the current operation
and starts a new page operation. The data written to the page buffer during the aborted
page operation are lost. The Enter Security Page Mode command also defines the
location of the 128-byte page to be programmed. Also refer to Section 3.9.4.

Note: The Enter Security Page Mode command is only accepted while any protection is
disabled.

User’s Manual 3-24 V2.1, 2004-03
Memory_X41, V2.1

—

technologies - System Units (Vol. 1 of 2)
Memory Organization
3.9.3 Error Correction and Data Integrity

Data integrity is supported by the Error Correction Code (ECC). This ECC is dynamically
generated during Flash write operations and stored in the Flash array together with the
corresponding data. For each read access the associated 8-bit ECC is fetched together
with the 64-bit read data and is evaluated.

Single bit errors are detected and automatically corrected on-the-fly (during run-time).
Therefore, single bit errors do not affect system operation.

Double bit errors are detected and trigger an Access Fault trap. This prevents
erroneous instructions or data from being used.

Each read error condition is indicated by a dedicated flag (SBER, DBER) in the Flash
Status Register FSR.

The probability of a double bit error (not automatically correctable by ECC) is extremely
low. Double bit errors can be avoided by performing a recovery operation after a single
bit error has been detected. For the recovery operation the following steps must be done:

* Detect the wordline containing the erroneous bit

e Store the contents of the wordline temporarily

¢ Erase this wordline

* Reprogram the erased wordline (requires two write page operations)

The wordline data copied to the temporary buffer are valid, because a single bit error
during reading is automatically corrected via the ECC. Erasing and programming is done

using standard command sequences.

Verify Operation

The violated wordline can be detected by a verify operation. After clearing bit SBER a
certain area of the Flash memory is read. Since the Flash array always delivers 64-bit
data, the read address can be incremented by 8 after every access, which minimizes the
number of necessary read cycles. After reading the defined area bit SBER indicates if or
if not this area contains the single bit error. The verify algorithm can gradually decrease
the size of the checked area down to the size of a wordline, or can check all wordlines
sequentially.

Refresh Operation

Even single bit errors can be avoided by detecting problematic (moving) bits before they
lead to a read error (and a recovery operation during runtime) and by reprogramming
(refreshing) them in advance. Problematic bits can be detected by combining the verify
operation with margin check control.

User’s Manual 3-25 V2.1, 2004-03
Memory_X41, V2.1

—

: XC164-16 Derivatives
!nfmegon/ System Units (Vol. 1 of 2)

Memory Organization

Margin Check Control

Flash cells store charges to represent bit levels. If the charge stored in a cell changes
(e.g. due to charge coupling during operations on neighbor cells) the respective bit may
be read wrong. As the charges change slowly this effect can be detected before a bit is
actually read wrong. In this case also a preventive correction (via software) is possible.

A problematic bit (i.e. a bit with a changed charge) can be detected by applying a more
severe comparator margin when reading a Flash location. This margin is controlled by
the Margin Control Register MAR, accessible with the special command sequences
Read/Write Margin (see Table 3-3).

A severe margin is selected by writing the value MARLEVSEL = 00015 or 01005 to
register MAR. A bit that returns a 1 when read with low level margin, while returninga O
when read with standard margin, represents a problematic bit, called weak zero. A bit
that returns a 0 when read with high level margin, while returning a 1 when read with
standard margin, represents a problematic bit, called weak one. Compare operations
over a certain memory area using standard and severe margins reveal these problematic
bits.

Note: Read operations may directly follow a MAR change operation.

MAR

Margin Control Register SFR (FF’F00C,,) Reset Value: 0000,

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MAR

- - - wvl o | - | 5| MARLEVSEL

- - - rw - - - w
Field Bits Type | Description
MARWV 7 rw Margin Write Validation

0 Reset value. MARWYV must not be written 0.

1 Must be set (MARWYV = 1) with every write
access to register MAR, independent of the
purpose of the write access.

MARLEVSEL |[3:0] rw Margin Level Selection

0000 Standard read margin (regular operation)
0001 Low level margin (used to verify weak zeros)
0100 High level margin (used to verify weak ones)
other Reserved

Note: Margin values can only be written via the Write Margin command. Bit MARWV
must be set with every write access.

User’s Manual 3-26 V2.1, 2004-03
Memory_X41, V2.1

—

technologies - System Units (Vol. 1 of 2)
Memory Organization
3.94 Protection and Security Features

The Flash module provides powerful and flexible protection of data and code against
destruction (i.e. erasure) and undesired modification (i.e. reprogramming) as well as
against undesired read access to Flash contents. Two protection mechanisms can be
activated:

* Sector-specific write protection protects individual sectors against erasing and
programming. This is important for the integrity of boot software and also avoids
modifications of code/data by malfunction or even manipulation.

* General read/write protection protects the complete program Flash area against all
accesses from outside the module itself. This includes data read accesses,
instruction fetches (i.e. jumps into the program Flash area), and OCDS operations.
The general read/write protection also disables erasing and programming. Command
sequences and register accesses are executed, however.

Each protection feature is installed by user software. Protection features may be
disabled temporarily to reprogram portions of the Flash memory or to call an external
subroutine. Disabling and re-enabling is done under software control. However, after a
reset all installed protection features are active (enabled) automatically.

By combining the two protection features a flexible protection scheme can be installed
to protect the Flash memory or parts of it against unauthorized programming or erasing
according to the application’s requirements.

Note: Protection is provided for the Program Flash only, there is no protection for the
Program SRAM.

Passwords and Security Code

All protection feature control (install, disable, re-enable) is accomplished through
command sequences similar to the program/erase sequences (see Table 3-5). The two
command sequences that temporarily suspend the protection feature are additionally
secured by a password check sequence (64-bit security code) to ensure maximum
safety against undesired accesses.

During password checking, the four passwords entered via the command sequence are
compared to the four keywords (building the 64-bit security code) stored in the security
sector. If any mismatch is detected the respective protection feature remains active, the
sector(s) remain(s) locked, and a protection error (PROER) is indicated in the Flash
status register. In this case, a new Disable Sector Write Protection command or a
Disable Read Protection command is only accepted after the next system-reset.

User’s Manual 3-27 V2.1, 2004-03
Memory_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Memory Organization

Security Feature Installation

The security features are installed by programming the following data (see Figure 3-7)
into the security sector:

* Security control bits, selecting the security feature(s) to be installed
* 64-bit security code (four keywords)
* 16-bit confirmation code

Note: If any protection is enabled also the security sector itself is protected.

The security control bits can be checked via register PROCON. The same bit-layout
must be used when programming the security control bits.

PROCON
Protection Control Register SFR (FF’F004,)) Reset Value: xxxx,
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R
PRO| - - - - - - - - - - - | SL3 |SL2|SL1|SLO
rh - - - - - - - - - - - rh rh rh rh
Field Bits Type | Description
RPRO 15 rh Read/Write Protection Configuration
0 No general protection installed
1 General read/write protection is installed
SLn 3,2,1, | rw Sector Lock Bit n
(n=3...0) 0 0 Sector is unprotected
1 Write protection installed for sector n
Note: Each two 8-Kbyte sectors are combined to a
16-Kbyte region that can be jointly locked by
bits SL1 and SLO.

Note: The security configuration can be checked by reading register PROCON.
To modify the security configuration the security sector must be modified.

The 64-bit security code (e.g. 494E'4649'4E45’4F4E,) must be correctly entered for
commands that temporarily disable security features. Any failure to enter all four words
correctly aborts the command and freezes the current security state until the next system
reset.

The 16-bit confirmation code (8AFE,) is required to validate the security feature
installation. The installed configuration can be verified prior to validating it.

The security information and the confirmation code are stored in separate wordlines so
they can be programmed and erased independently from each other.

User’s Manual 3-28 V2.1, 2004-03
Memory_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Memory Organization

Each byte of the security information is stored three times and completed with a zero-
byte, so each 16-bit word to be stored uses the space of two doublewords (see example

in Figure 3-7). All three copies of a data byte are used for evaluation which provides
extreme reliability.

Security Page 3: Reserved Security Page 2: Control Bits/Words

Security Wordline 1

Security Page 1: Confirmation Security Page 0: Reserved

Security Wordline 0

127 / |64 56 48 40 32 24 16 8 0
Keyw. 4 | Keyw. 3 | Keyw.2 | Keyw. 1 |[PROCON

/ Security Page 2

127 / |64 56 48 40 32 24 16 8 0

Confirm.

___————""""Security Page 1

’ FE, FE,

8A, FE,

Example-Word = Confirmation

mc_xc16x_secsector.vsd

Figure 3-7 Security Sector Structure

User’s Manual 3-29 V2.1, 2004-03
Memory_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Memory Organization

Whenever the security configuration is modified (installation, modification, de-
installation) the following procedure should be performed:

e Clear confirmation code by erasing security wordline O.

This uninstalls all protection features (PROIN = 0).

Erase security wordline 1.

Program the intended configuration and keywords into security page 2.
Verify the programmed configuration and keywords.

Program the confirmation code into security page 1.

This installs the new protection features.

Following these steps prevents dead-locks resulting for example from programming
erroneous keywords (e.g. due to power problems during programming) with existing
confirmation code. The security features would be immediately active in this case
whereas the erroneous keywords are not known.

Read/Write Protection Control

Read protection can be activated for code fetches and data reads separately via the
control bits DCF (Disable Code Fetch) and DDF (Disable Data Fetch) in register
IMBCTR. Read accesses are blocked as long as the respective disable flag (DCF, DDF)
is set and read protection is active, indicated by bit RPA (Read Protection Active) in
register IMBCTR. An access to the protected Flash will deliver a dummy value of 1E9B,,.
While read protection is disabled (RPA = 0), bits DCF and DDF have no effect on read
accesses.

After a reset starting execution out of the on-chip Flash module bits DCF and DDF are
cleared. This enables all accesses while code is executed from a safe source. Bit DDF
can be set by user software to prevent data reads from the Flash module while still
enabling code execution.

After any other reset (including boot mode) both bits are set (if protection is installed). By
entering the 64-bit security code the read protection can be disabled temporarily by
software executed out of external sources.

Note: Bits DCF and DDF can only be set via software, they cannot be cleared.

Attention: Be sure not to set DCF while executing out of on-chip Flash with read
protection active.

Read/write protection is active (RPA = 1) if it has been installed (RPRO = 1) and is
currently not disabled (PRODI = 0).

User’s Manual 3-30 V2.1, 2004-03
Memory_X41, V2.1

—

: XC164-16 Derivatives
!nfmegon/ System Units (Vol. 1 of 2)

Memory Organization

Read/Write Protection Handling

After reset, bit RPA indicates if the read/write protection is installed or not. User software
can disable the read/write protection temporarily (indicated by RPA = 0). Bits DCF and
DDF prevent Flash read accesses while RPA = 1. Because DCF and DDF are cleared
after starting from the on-chip Flash memory, the user software is responsible for the
protection handling.

If the read/write protection is enabled, the debug system is disabled to avoid not-
authorized accesses to the Flash via the debug interface. Only if explicitly enabled by
user software, the debug interface can be temporarily activated, even if the read/write
protection is enabled.

The following rules ensure a safe read/write protection:

* no JUMPs or CALLs to external memory locations

* no execution of code loaded via any interface

e set DCF and DDF before transferring control to external locations (no return!)
* |eave the debug system disabled

Note: Of course, external code can be executed intermediately while the read/write
protection is disabled. Also the debug interface can be enabled, so protected
devices can be debugged.

However, this should only be done after validation (e.g. by a specific security key),
because read/write protection does not work during these phases.

User’s Manual 3-31 V2.1, 2004-03
Memory_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Memory Organization

3.95 Flash Status Information

The Flash Status Register FSR provides status information about all functions of the
Flash module:

e Operating state
e Error conditions
e Security level

The FSR should be read before and after the execution of command sequences. The
FSR cannot be written directly. The “Clear Status” command clears the error flags and
the status flags PROG and ERASE, the “Reset to Read” command clears the error flags.

FSR
Flash Status Register SFR (FF’F000,,) Reset Value: 0xxxy
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
) . lsuLl - PRO |PRO| DB | SB |[PRO| SQ) OP | PA |[ERA| PR | BU
IN | DI | ER | ER | ER | ER ER | GE | SE | OG | SY
rh - rh rh rh rh rh rh - rh rh rh rh rh
Field Bits Type | Description
SUL 13 rh Sectors Unlocked
0 Sectors are protected according to the
installation
1 All sectors are temporarily unlocked (check
general protection)
PROIN 11 rh Protection Installed
0 No security features installed
1 General read/write protection and/or sector-
specific write protection installed (see register
PROCON)
PRODI 10 rh Protection Disabled
0 General read/write protection active (if
installed)
1 General read/write is temporarily disabled
DBER 9 rh Double Bit Error (Cleared via “Clear status”,
“Reset-to-read”)
0 No double bit error has occurred
1 A double bit error was detected (no correction
possible)
User's Manual 3-32 V2.1, 2004-03

Memory_X41, V2.1

—

: XC164-16 Derivatives
!ntmegon/ System Units (Vol. 1 of 2)

Memory Organization

Field Bits Type |Description

SBER 8 rh Single Bit Error (Cleared via “Clear status”,
“Reset-to-read”)
0 Read/fetch accesses executed without error

1 A single bit error was detected and
automatically corrected
PROER 7 rh Protection Error (Cleared via “Clear status”,

“Reset-to-read”)

0 No protection error detected

1 Protection error has occurred:
attempt to program/erase a locked sector or
invalid security code’

SQER 6 rh Command Sequence Error (Cleared via “Clear

status”, “Reset-to-read”)

0 No command sequence error detected

1 State machine operation aborted due to invalid
command step

Note: SQER is not set when a command sequence
is aborted with a “Reset to Read” command.
SQER is set when a “Clear Status” command
is attempted while the Flash module is busy
(PROG or ERASE are not cleared).

OPER 4 rh Operation Error (Cleared via “Clear status”,

“Reset-to-read”)

0 Flash operation successfully finished or
currently in progress

1 Flash operation not successfully terminated
(abortion)
PAGE 3 rh Page Mode (Cleared via “Reset-to-read”)

0 Flash not in page mode
1 Flash in page mode, page buffer being filled

Note: Page mode can be active during standard read
mode.

ERASE 2 rh Erase State (Cleared via “Clear status”,
“Reset-to-read”)

0 There is no erase operation in progress
1 Flash busy with erase operation

User’s Manual 3-33 V2.1, 2004-03
Memory_X41, V2.1

—

Infineon XC164-16 Derivatives
lechnologies System Units (Vol. 1 of 2)
Memory Organization
Field Bits Type |Description
PROG 1 rh Programming State (Cleared via “Clear status”,
“Reset-to-read”)
0 There is no programming operation in progress
1 Flash busy with programming operation (write
page)
BUSY 0 rh Flash Busy

0 Ready: Flash command execution is
completed. Module is in standard read mode.

1 Busy: Embedded algorithm for command
execution is in progress or Flash module is in
ramp-up state?. Module not in read mode.

1) After the occurrence of a protection error the next password sequence is only accepted after a reset.

2) After a system reset BUSY will be active for approx. 250 us until the internal voltages have settled.

Note: By evaluating bits PROG and ERASE together with bits BUSY and OPER the
control software can determine if an operation is in progress, has terminated, or

has been aborted.

User’s Manual
Memory_X41, V2.1

3-34 V2.1, 2004-03

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Memory Organization

3.9.6 Operation Control and Error Handling

Command execution is started with the last command of the respective command
sequence and is indicated by the respective state flag (PROG for programming, ERASE
for erasing) as well as by the summarizing BUSY flag. While polling BUSY is sufficient
to detect the end of a command execution it is recommended to check the error flags
afterwards to find erroneous operations.

The following general structure for command execution is recommended:

* Clear status

* Write command sequence to Flash module

* Ensure correct sequence by checking bits SQER and PROER

e |If error: clear flags via “Clear Status” or “Reset” and act upon it (e.g. with a retry
operation)

e Check for the correct command by polling bits PROG and ERASE

* Poll BUSY to determine the command termination

* Check error flags

The error bits in status register FSR are registered bits (flipflops) and indicate a fault
condition as long as the error bit is set. It is therefore necessary to clear the error flags
by commands.

Table 3-6 gives examples of software actions to be taken after a specific error has been
detected:

Table 3-6 Software Reactions to Error Conditions

Detected Error | Fault Condition Software Reaction
SQER Wrong register address, Check address or code and
Sequence Error | wrong command/sector/wordline repeat with correct values
address,
wrong command code,
illegal command sequence
OPER Aborted programming or erase Repeat Flash operation
Operation Error | operation due to SW reset, WDT (PROG and ERASE indicate
reset, or warm HW reset the failed operation)
PROER Begin of write operation (Enter Page | Retry operation after
Protection Error | Mode) to protected sector, disabling protection,
General password failure Retry operation after reset
SBER The Error Correction Code (ECC) has | Refresh faulty wordline
Single Bit Error |revealed a single bit error (see Section 3.9.3)
DBER" The Error Correction Code (ECC) has | Double bit error triggers a
Double Bit Error |revealed a double bit error trap

1) Does not occur if a refresh operation is executed after a single bit error (see Section 3.9.3).

User’s Manual 3-35 V2.1, 2004-03
Memory_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Memory Organization

Reset and Power-Down Processing

Upon a reset the Flash module resets its state machine and enters the standard read
mode after the internal voltages have stabilized. The internal voltages need to ramp up
(e.g. after power down) or to ramp down (e.g. after an interrupted programming or erase
operation). This power stabilization phase is indicated by flag BUSY. Accesses during
the power stabilization phase are delayed until power has stabilized.

The Flash module is requested to ramp down its internal voltages by entering
Power Down mode, Sleep mode or Idle mode (with Flash off), by disabling it via
SYSCONS3, or by executing a software reset. After completing execution and termination
of the running operation (including program or erase operation) the request is
acknowledged and the CPU can complete the intended action.

Note: The delay caused by the stabilization phase must also be considered when
calculating delays for wake-up from idle, sleep, or power down states.

User’s Manual 3-36 V2.1, 2004-03
Memory_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Memory Organization

3.10 The On-Chip Program Mask ROM

The XC164 incorporates 128 Kbytes of factory-programmed Mask-ROM" (starting at
location C0’0000,, see Figure 3-5) for code or constant data. The ROM uses two
64-Kbyte segments (segments 192 ... 193). The 64-bit code read accesses realize
maximum CPU performance by fetching two double word instructions (or four single
word instructions) in a single access cycle. Thus, program execution out of the internal
ROM results in maximum performance.

Security is provided by a general read protection (complete ROM). The temporary
disabling of this hardware protection feature is secured with a password check
sequence. The keywords used for the password check sequence are stored in the four
uppermost words of the ROM area (see Figure 3-8).

The physical address range of the ROM module covers byte addresses from 0’0000 to
1’FFFFy. These physical addresses are mapped to the XC164’s program memory area
starting at C0’0000,,.

Note: Accesses to a protected ROM are totally disabled during bootstrap mode and after
a start from external memory. Before any access the protection must be
temporarily disabled using the correct password sequence.

3.10.1 Protection and Security Features

The ROM module provides powerful and flexible protection of data and code against
undesired read access to ROM contents.

General read protection protects the complete program ROM area against all accesses
from outside the module itself. This includes data read accesses, instruction fetches (i.e.
jumps into the ROM area), and OCDS operations. Command sequences are executed,
however.

ROM protection is established during the production process of the device (a ROM mask
can be ordered with ROM protection or without it). The protection is installed by placing
a non-zero 64-bit security code (4 keywords) into the four uppermost word locations of
the ROM module (C1’FFF8,, ... C1’FFFF,). Protection may be disabled temporarily to
call an external subroutine. Disabling and re-enabling is done under software control.
However, after a reset an installed protection is active (enabled) automatically.

Passwords and Security Code

All protection control (disable, re-enable) is accomplished through command sequences
(see Table 3-7). The command sequence that temporarily suspends the protection is
additionally secured by a password check sequence (64-bit security code) to ensure
maximum safety against undesired accesses.

1) The ROM is provided in the ROM-derivatives of the XC164 only, of course.

User’s Manual 3-37 V2.1, 2004-03
Memory_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Memory Organization

During password checking, the four passwords entered via the command sequence are
compared to the four keywords (building the 64-bit security code) stored in the
uppermost word locations of the ROM module. The 64-bit security code (e.g.
494E’4649'4E45°'4FAE,,) must be correctly entered. If any mismatch is detected the
command sequence is aborted and the protection remains active. In this case, a new
Disable Read Protection command is only accepted after the next system-reset.

CI'FFFE,, CI'FFFC, CI'FFFA, CIFFF8, CI'FFF6, CIFFF4, CIFFR2, CI'FFFO,,

Keyw. 4 | Keyw. 3 | Keyw. 2 | Keyw. 1

CI'FFEE,, 00’0000,

mc_xc16x_secrom128.vsd

Figure 3-8 Security Code Storage

Read Protection Control

Read protection can be activated for code fetches and data reads separately via the
control bits DCF (Disable Code Fetch) and DDF (Disable Data Fetch) in register
IMBCTR. Read accesses are blocked as long as the respective disable flag (DCF, DDF)
is set and read protection is active, indicated by bit RPA (Read Protection Active) in
register IMBCTR.

After a reset starting execution out of the on-chip ROM module bits DCF and DDF are
cleared. This enables all accesses while code is executed from a safe source. Bit DDF
can be set by user software to prevent data reads from the ROM module while still
enabling code execution.

After any other reset both bits are set (if protection is installed). By entering the 64-bit
security code the read protection can be disabled temporarily by software executed out
of external sources.

Note: Bits DCF and DDF can only be set via software, they cannot be cleared.

Attention: Be sure not to set DCF while executing out of on-chip ROM with read
protection active.

Read protection is active (RPA = 1) if it has been installed and is currently not disabled.

User’s Manual 3-38 V2.1, 2004-03
Memory_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Memory Organization

3.10.2 Command Sequences

All operations besides normal read operations are initiated and controlled by command
sequences written to the ROM state machine. The different write cycles of command
sequences define the intended command, but also establish a failsafe mechanism to
protect against inadvertent operations. Commands affecting security issues require a
64-bit security code (four passwords) to be accepted. Command cycles need not be
consecutively received (pauses allowed).

Command sequences can be performed simultaneously to instruction fetch operations,
so instructions for command sequences also can be executed out of the on-chip ROM.

Writing incorrect address and data values or writing them in the improper sequence will
abort the intended operation and retain the current operating mode.

Table 3-7 summarizes the implemented command sequences for protection control:

Table 3-7 Command Sequence Definitions (Protection Control for ROM)

Cycle |Disable Read Protection Re-Enable Protection
1 A = Cx’xx3Cy A = any address except Cx'xx3C
D =PW1 D = xxxxy
2 A = Cx’xx3Cy =
D =PW2
3 A = Cx’xx3Cy -
D =PWS3
4 A = Cx’xx3Cy -
D=PW4

Note: PWn is one of the four passwords building the 64-bit security code (n =1 ... 4).
The shown virtual addresses (Cx’xx..,) must point to the ROM space (e.g.
C0’003C,).

The Disable Read Protection command temporarily disables the general ROM read
protection, indicated by RPA = 0. Read protection remains disabled until the execution
of the Re-Enable Protection command or until the next reset.

While read protection is disabled, ROM read accesses including injected OCDS
instructions are executed.

This is a protected command sequence requiring the 64-bit security code (four user-
defined passwords) for validation (see Section 3.10.1).

The Re-Enable Protection command immediately resumes the installed but
temporarily disabled general read protection.

User’s Manual 3-39 V2.1, 2004-03
Memory_X41, V2.1

—

Infineon
ec no Ogles/

XC164-16 Derivatives
System Units (Vol. 1 of 2)

Memory Organization

3.1

The internal program memory block IMB consists of an interface part (program memory
interface PMI) to control the accesses to the memories and the following memory blocks:

* 128 Kbytes program Flash memory (including error correction ECC) or ROM, starting
at address C0’0000y
* 2 Kbytes program SRAM, starting at address E0’0000

The ROM/Flash memory block and the program SRAM block can contain the program
code, but can also store data, which can be accessed by the CPU.

Program Memory Control

Program Memory Block
Program Flash/ROM
SRAM Array
Interface Interface
7'} A 7'} A
I I
422 164 116 422 164 116
1 i 4 i y
< 21
RPA =
64
15 Program Memory Interface (PMI)
SCU IMBCTR Control and Multiplexer 16 PMU
1
1
: Ready
i AR _CA>
Y18 fe4 116 | 2|8 23
\ 4 Y L
Interface
Wait
Emulation Device ?:tlatetf
(Overlay + Monitor) as
_Address
Data MCA05503
Figure 3-9 Overview of the Internal Program Memory Block IMB

Figure 3-9 shows the main blocks of the IMB, specific control signals are not mentioned
for simplicity reasons.

The behavior of the memories is adaptable to the requirements of the application. If the
program is executed from the on-chip ROM, Flash memory, or from the internal SRAM,

User’s Manual 3-40 V2.1, 2004-03

Memory_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Memory Organization

the latencies have to be identical in some cases. To solve this problem, the access times
of the SRAM and the ROM can be programmed to be equal to the Flash timings. In the
best case, the internal SRAM and ROM will allow single cycle accesses. A
programmable wait state generation logic is part of the program memory interface (PMI)
inside the IMB.

The number of access cycles can be programmed independently for the SRAM and the
Flash memory.

3.11.1 Address Map

The address map of the program memory blocks is shown in Figure 3-10.

The program Flash memory or ROM always starts at address C0’0000,; and the program
SRAM at address E0’0000,,.

The read-only Flash status registers can be accessed starting at address FF’FO00,,. Any
write access to this address range must be avoided.

The access to addresses, which are not explicitly mentioned as valid memory/register
area is forbidden.

| | |
1] |
__r ______________ I T
I
1
i Flash
i Registers
b -~ FF'F000,,
| | |
I 1 |
| i |
i i |
b e 1-- FF'0000,,
|
|
Program i
SRAM :
|
- b +-- E0'0000,,
I
i Program
: ROM/Flash
e e R e R , -- C0'0000,,
MCA05502

Figure 3-10 Address Map of the Program Memory Block IMB

User’s Manual 3-41 V2.1, 2004-03
Memory_X41, V2.1

—

: XC164-16 Derivatives
!ntmegon/ System Units (Vol. 1 of 2)

Memory Organization

3.11.2 Flash Memory Access

The internal functional structure of the interface between the PMU/PMI and the Flash
memory is shown in Figure 3-11. The access is done in two phases:

* The Flash array delivers the accessed data within a fixed time of 50 ns maximum.
The duration of the first access phase (1+WS) must cover the Flash Array’s access
time. Waitstates must be selected accordingly (bitfield WSFLASH in register
IMBCTRL).

Example: Operating at 40 MHz results in a cycle time of 25 ns. Therefore, the access
phase requires 2 cycles, so one waitstate must be selected (1+1).

e The error correction (ECC) and the PMU require one additional clock cycle each.

The CPU receives requested data after 1+WS+2 cycles (4 cycles if 1 WS is selected).
However, this delay only becomes effective for an isolated access (read from a non-
linear address). A prefetching mechanism overlaps phase 1 of a subsequent access with
phase 2 of the previous access, so the sustained performance for linear accesses (e.g.
code fetches) is considerably higher.

Flash accesses can be serviced every 1+WS cycles, because the Flash array itself only
requires phase 1.

Flash Address Flash CPU Address
Address PMU +
; PMI
Unit
Access Flash
Phase 1 Array CPU
\ 4 PMU +
ECC
Flash Data PMI CPU Data
Access Phase 2 "
MCAO05500

Figure 3-11 Flash - PMI Structure

User’s Manual 3-42 V2.1, 2004-03
Memory_X41, V2.1

—

: XC164-16 Derivatives
!ntmegon/ System Units (Vol. 1 of 2)

Memory Organization

Example for Flash Accesses with one Wait State (WS = 1)

After the first access (e.g. after a jump to the first address delivered by the CPU), four
clock cycles are necessary to fetch the corresponding data (1+1+2).

This leads to the following sequence of clock cycles between the delivery of subsequent
datawords: 4-2-2-2-2- ...

In the case that the CPU requests another address than the one proposed by the
prefetcher (e.g. in case of a jump), the Flash address unit immediately changes to the
new address and begins a new sequence (4 - ...).

Note: If the Flash access phase takes more than two cycles (more than 1 WS), prefetch
accesses make no sense, so the Flash prefetching mechanism is disabled.

User’s Manual 3-43 V2.1, 2004-03
Memory_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Memory Organization

3.11.3 User ROM Access

The internal functional structure of the interface between the PMU/PMI and the user
ROM is shown in Figure 3-12. The access is done in two phases:

e The ROM array delivers the accessed data within one cycle. Waitstates can be
selected to emulate accesses to a Flash memory.

e The PMU requires one additional clock cycle. One more clock cycle is inserted if
Flash timing is selected (bit WSROM in register IMBCTRL).

The CPU receives requested data after 1+1 cycles with ROM timing (1+WS+2 cycles
with Flash timing).

However, this delay only becomes effective for an isolated access (read from a non-
linear address). A prefetching mechanism overlaps phase 1 of a subsequent access with
phase 2 of the previous access, so the sustained performance for linear accesses (e.g.
code fetches) is considerably higher.

ROM Address PMU + CPU Address
PMI
Access ROM
Phase 1 Array CPU
y
v PMU +
ROM Data PMI CPU Data

v

Access Phase 2
MCA05500_ROM

Figure 3-12 ROM - PMI Structure

User’s Manual 3-44 V2.1, 2004-03
Memory_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Memory Organization

3.11.4 IMB Control Functions

Wait State Generation

The generation of wait states is handled by a wait state unit, which indicates when the
requested data (or instruction word) is available. The address window for the ROM/Flash
memory starts at address C0’0000, and selects an address range of 2 Mbytes.

The reset value defines a two cycle Flash memory access. The ROM and the program
SRAM can be accessed with a one cycle read.

IMB Control Register

Register IMBCTR contains the bitfields controlling the wait state generation for the Flash
memory and the other IMB memory blocks. One wait state represents one clock cycle.
The wait states have to be introduced in order to adapt the memory access time in clock
cycles (depending on the clock frequency) to the Flash access time. User ROM and
PSRAM can be accessed using the Flash timing, e.g. for emulation purposes.

This register is protected against undesired modification by the register security
mechanism. This register is only reset by a hardware reset, a SW reset or a WDT reset
do not change the bits.

IMBCTR
IMB Control Register ESFR (FOFE,/7F,) Reset Value: xx01

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WS | WS WS
RPA) DDF | DCF) ROM|RAM| FLASH
rh I — I rwh rwh - rw rw I’\IN
Field Bits Type |Description
RPA 15 rh Read Protection Activated

This bit monitors the status of the Flash-internal read
protection. This bit can only be 0 while the Flash
memory is active (see Flash Busy Bit), otherwise it
is 1.

0 The Flash-internal read protection is not
activated. Bits DCF, DDF are not taken into
account.

1 The Flash-internal read protection is activated.
Bits DCF, DDF are taken into account.

User’s Manual 3-45 V2.1, 2004-03
Memory_X41, V2.1

—

: XC164-16 Derivatives
!nfmegon/ System Units (Vol. 1 of 2)

Memory Organization

Field Bits Type |Description

DDF 9 rwh Disable Data Read from ROM/Flash Memory

This bit enables/disables the data read access from

the internal ROM/Flash memory area. Once set, this

bit can only be cleared by a HW reset.

0 The data read access from the ROM/Flash
memory area is allowed.

1 The data read access from the ROM/Flash
memory area is not allowed. This bit is not
taken into account while RPA = 0.

DCF 8 rwh Disable Code Fetch from ROM/Flash Memory

This bit enables/disables the code fetch from the

internal ROM/Flash memory area. Once set, this bit

can only be cleared by a HW reset.

0 The code fetch from the ROM/Flash memory
area is allowed.

1 The code fetch from the ROM/Flash memory
area is not allowed. This bit is not taken into
account while RPA = 0.

WSROM 3 rw Wait State Control for User ROM Access

This bit defines the behavior of a memory in the user

ROM area in the IMB for a read access. This memory

area is located in the address range from C0’0000,,

to DF’FFFFy. The write access to this memory area
is not possible.

0 The user ROM area is accessed with the
maximum access speed, which is a single
cycle read access.

1 The user ROM behaves exactly like the user
Flash. The pipelined structure and the access
time are taken into account to rebuild the
identical behavior.

Note: Bit WSROM is only available in the ROM-
derivatives of the XC164, of course.

User’s Manual 3-46 V2.1, 2004-03
Memory_X41, V2.1

—

Infineon XC164-16 Derivatives
lechnologies System Units (Vol. 1 of 2)
Memory Organization
Field Bits Type |Description
WSRAM 2 rw Wait State Control for Program RAM Access

This bit defines the behavior of a memory in the

program SRAM area in the IMB for a read access.

This memory area is located in the address range

from E0’'0000, to F7’FFFF,,. The write access to this

memory area is always handled within one clock
cycle for the memory.

0 The program SRAM area is accessed with the
maximum access speed, which is a single
cycle read access.

1 The program SRAM behaves exactly like the
user Flash. The pipelined structure and the
access time are taken into account to rebuild
the identical behavior.

WSFLASH [1:0] rw Wait States for the Flash Memory

This bitfield defines the number of additional wait

states, which are added for a read access from the

Flash memory area, which is located in the address

range from C0’0000, to DF'FFFF,,.

00 No additional wait state is introduced for the
Flash read access. This corresponds to a
Flash read access in one clock cycle.

01 One additional wait state is introduced for the
Flash read access. This corresponds to a
Flash read access in two clock cycles.
(default)

10 Two additional wait states are introduced for
the Flash read access. This corresponds to a
Flash read access in three clock cycles.

11 Three additional wait states are introduced for
the Flash read access. This corresponds to a
Flash read access in four clock cycles.

User’s Manual 3-47 V2.1, 2004-03
Memory_X41, V2.1

—

Infineon XC1 64-'16 Derivatives
lechnologies System Units (Vol. 1 of 2)
Central Processing Unit (CPU)

4 Central Processing Unit (CPU)

Basic tasks of the Central Processing Unit (CPU) are to fetch and decode instructions,
to supply operands for the Arithmetic and Logic unit (ALU) and the Multiply and
Accumulate unit (MAC), to perform operations on these operands in the ALU and MAC,
and to store the previously calculated results. As the CPU is the main engine of the
XC164 microcontroller, it is also affected by certain actions of the peripheral subsystem.

Because a five-stage processing pipeline (plus 2-stage fetch pipeline) is implemented in
the XC164, up to five instructions can be processed in parallel. Most instructions of the
XC164 are executed in one single clock cycle due to this parallelism.

This chapter describes how the pipeline works for sequential and branch instructions in
general, and the hardware provisions which have been made to speed up execution of
jump instructions in particular. General instruction timing is described, including standard
timing, as well as exceptions.

While internal memory accesses are normally performed by the CPU itself, external
peripheral or memory accesses are performed by a particular on-chip External Bus
Controller (EBC) which is invoked automatically by the CPU whenever a code or data
address refers to the external address space.

Whenever possible, the CPU continues operating while an external memory access is in
progress. If external data are required but are not yet available, or if a new external
memory access is requested by the CPU before a previous access has been completed,
the CPU will be held by the EBC until the request can be satisfied. The EBC is described
in a separate chapter.

The on-chip peripheral units of the XC164 work nearly independently of the CPU with a
separate clock generator. Data and control information are interchanged between the
CPU and these peripherals via Special Function Registers (SFRs).

Whenever peripherals need a non-deterministic CPU action, an on-chip Interrupt
Controller compares all pending peripheral service requests against each other and
prioritizes one of them. If the priority of the current CPU operation is lower than the
priority of the selected peripheral request, an interrupt will occur.

There are two basic types of interrupt processing:

* Standard interrupt processing forces the CPU to save the current program status
and return address on the stack before branching to the interrupt vector jump table.

e PEC interrupt processing steals only one machine cycle from the current CPU
activity to perform a single data transfer via the on-chip Peripheral Event Controller
(PEC).

System errors detected during program execution (hardware traps) and external non-
maskable interrupts are also processed as standard interrupts with a very high priority.

In contrast to other on-chip peripherals, there is a closer conjunction between the
watchdog timer and the CPU. If enabled, the watchdog timer expects to be serviced by

User’'s Manual 4-1 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

the CPU within a programmable period of time, otherwise it will reset the chip. Thus, the
watchdog timer is able to prevent the CPU from going astray when executing erroneous
code. After reset, the watchdog timer starts counting automatically but, it can be disabled
via software, if desired.

In addition to its normal operation state, the CPU has the following particular states:

* Reset state: Any reset (hardware, software, watchdog) forces the CPU into a
predefined active state.

* |IDLE state: The clock signal to the CPU itself is switched off, while the clocks for the
on-chip peripherals keep running.

* SLEEP state: All of the on-chip clocks are switched off (RTC clock selectable),
external interrupt inputs are enabled.

* POWER DOWN state: All of the on-chip clocks are switched off (RTC clock
selectable), all inputs are disregarded.

Transition to an active CPU state is forced by an interrupt (if in IDLE or SLEEP mode) or
by a reset (if in POWER DOWN mode).

The IDLE, SLEEP, POWER DOWN, and RESET states can be entered by specific
XC164 system control instructions.

A set of Special Function Registers is dedicated to the CPU core (CSFRs):

CPU Status Indication and Control: PSW, CPUCON1, CPUCON2
Code Access Control: IP, CSP

Data Paging Control: DPPO, DPP1, DPP2, DPP3

Global GPRs Access Control: CP

System Stack Access Control: SP, SPSEG, STKUN, STKOV
Multiply and Divide Support: MDL, MDH, MDC

Indirect Addressing Offset: QR0, QR1, QX0, QX1

MAC Address Pointers: IDX0, IDX1

MAC Status Indication and Control: MCW, MSW, MAH, MAL, MRW
ALU Constants Support: ZEROS, ONES

The CPU also uses CSFRs to access the General Purpose Registers (GPRs). Since all
CSFRs can be controlled by any instruction capable of addressing the SFR/CSFR
memory space, there is no need for special system control instructions.

However, to ensure proper processor operation, certain restrictions on the user access
to some CSFRs must be imposed. For example, the instruction pointer (CSP, IP) cannot
be accessed directly at all. These registers can only be changed indirectly via branch
instructions. Registers PSW, SP, and MDC can be modified not only explicitly by the
programmer, but also implicitly by the CPU during normal instruction processing.

Note: Note that any explicit write request (via software) to an CSFR supersedes a
simultaneous modification by hardware of the same register.

User’'s Manual 4-2 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

All CSFRs may be accessed wordwise, or bytewise (some of them even bitwise).
Reading bytes from word CSFRs is a non-critical operation. Any write operation to a
single byte of a CSFR clears the non-addressed complementary byte within the specified
CSFR.

Attention: Reserved CSFR bits must not be modified explicitly, and will always
supply a read value of 0. If a byte/word access is preferred by the
programmer or is the only possible access the reserved CSFR bits
must be written with 0 to provide compatibility with future versions.

User’s Manual 4-3 V2.1, 2004-03
CPUSV2_X, V2.2

—

: XC164-16 Derivatives
!nfmegon/ System Units (Vol. 1 of 2)
Central Processing Unit (CPU)

4.1 Components of the CPU

The high performance of the CPU results from the cooperation of several units which are
optimized for their respective tasks (see Figure 4-1). Prefetch Unit and Branch Unit
feed the pipeline minimizing CPU stalls due to instruction reads. The Address Unit
supports sophisticated addressing modes avoiding additional instructions needed
otherwise. Arithmetic and Logic Unit and Multiply and Accumulate Unit handle
differently sized data and execute complex operations. Three memory interfaces and
Write Buffer minimize CPU stalls due to data transfers.

PMU[————) PSRAM
Flash/ROM
CPU
Prefetch | [csSP| 1P | | VECSEG | 2-Stage
i Prefetch
Unt CPUCON1 TFR 11HE£&M
Branch CPUCON?2
Unit Injection/ S'Spti?,geﬁne DPRAM
Exception
Return Handler
o Stack | iru IPIP
IDX0 QRO DPPO SPSEG [cp |
IDX1 QR1 DPP1 SP (—) T
QX0 DPP2 STKOV R15 . T
Qxi DPP3 STKUN R14 1 : =12
\ - / \ - ADU - GPRs 4 -E L GPRs -
: ———— — R1_H R1
Multiply | MRW | Division Unit | [Bit-Mask-Gen. 0 H R0
Unit Multiply unit | [Barrer-shitter || |"—=——=[[| l
\ / MCW MDC \ / R T |
+- MSW | PSW |
[wmDH MDL - -
[wan || waL | - Buffer - DSRAM
[zEROS || ONES | - . EBC
MAC ALU WB Peripherals
DMU
mca04917_x.vsd

Figure 4-1 CPU Block Diagram

User’'s Manual 4-4 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

In general the instructions move through 7 pipeline stages, where each stage processes
its individual task (see Section 4.3 for a summary):

* the 2-stage fetch pipeline prefetches instructions from program memory and stores
them into an instruction FIFO

* the 5-stage processing pipeline executes each instruction stored in the instruction
FIFO

Because passing through one pipeline stage takes at least one clock cycle, any isolated
instruction takes at least five clock cycles to be completed. Pipelining, however, allows
parallel (i.e. simultaneous) processing of up to five instructions (with branches up to six
instructions). Therefore, most of the instructions appear to be processed during one
clock cycle as soon as the pipeline has been filled once after reset.

The pipelining increases the average instruction throughput considered over a certain
period of time.

4.2 Instruction Fetch and Program Flow Control

The Instruction Fetch Unit (IFU) prefetches and preprocesses instructions to provide a
continuous instruction flow. The IFU can fetch simultaneously at least two instructions
via a 64-bit wide bus from the Program Management Unit (PMU). The prefetched
instructions are stored in an instruction FIFO.

Preprocessing of branch instructions enables the instruction flow to be predicted. While
the CPU is in the process of executing an instruction fetched from the FIFO, the
prefetcher of the IFU starts to fetch a new instruction at a predicted target address from
the PMU. The latency time of this access is hidden by the execution of the instructions
which have already been buffered in the FIFO. Even for a non-sequential instruction
execution, the IFU can generally provide a continuous instruction flow. The IFU contains
two pipeline stages: the Prefetch Stage and the Fetch Stage.

During the prefetch stage, the Branch Detection and Prediction Logic analyzes up to
three prefetched instructions stored in the first Instruction Buffer (can hold up to six
instructions). If a branch is detected, then the IFU starts to fetch the next instructions
from the PMU according to the prediction rules. After having been analyzed, up to three
instructions are stored in the second Instruction Buffer (can hold up to three instructions)
which is the input register of the Fetch Stage.

In the case of an incorrectly predicted instruction flow, the instruction fetch pipeline is
bypassed to reduce the number of dead cycles.

User’s Manual 4-5 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infi XC164-16 Derivatives
nrineon .
lechnologies System Units (Vol. 1 of 2)
Central Processing Unit (CPU)
24-bit 64-bit
Address Data
W IFU Control | IFU Pipeline H
i Instruction Buffer (up to 6 Instr.) |
> csp ‘ ‘
+/- > P , — ,
I Branch Detection and Prediction Logic I
‘ ‘ Prefetch
Return Stack Stage
——1> Instruction Buffer (up to 3 Instr.) [
} CPUCON1 Branch Folding
Unit o
> CPUCON2 o 3
2 8
Control Registers Instruction 3 (03
FIFO . e
+ O
5 ko)
- [}
Injection and Exception u ‘ ‘ e a
Handler 2 7
\ / 1 g
> >
> vecseg| D TFR| | @ & | Fetch
Stage
:|> Instruction Buffer (up to 1 Instr.)|
u ~ vDecode
Stage
MCAO05501

Figure 4-2 IFU Block Diagram

On the Fetch Stage, the prefetched instructions are stored in the instruction FIFO. The
Branch Folding Unit (BFU) allows processing of branch instructions in parallel with
preceding instructions. To achieve this the BFU preprocesses and reformats the branch
instruction. First, the BFU defines (calculates) the absolute target address. This address
— after being combined with branch condition and branch attribute bits — is stored in
the same FIFO step as the preceding instruction. The target address is also used to
prefetch the next instructions.

For the Processing Pipeline, both instructions are fetched from the FIFO again and are
executed in parallel. If the instruction flow was predicted incorrectly (or FIFO is empty),
the two stages of the IFU can be bypassed.

Note: Pipeline behavior in case of a incorrectly predicted instruction flow is described in
the following sections.

User’s Manual 4-6 V2.1, 2004-03
CPUSV2_X, V2.2

—

. XC164-16 Derivatives
!nfmegon/ System Units (Vol. 1 of 2)
Central Processing Unit (CPU)

4.2.1 Branch Detection and Branch Prediction Rules

The Branch Detection Unit preprocesses instructions and classifies detected branches.
Depending on the branch class, the Branch Prediction Unit predicts the program flow
using the following rules:

Table 4-1 Branch Classes and Prediction Rules

Branch Instruction Classes |Instructions Prediction Rule (Assumption)
Inter-segment branch JMPS seg, caddr | The branch is always taken
instructions CALLS seg, caddr
Branch instructions with JMPA- xcc, caddr | User-specified" via bit 8 (‘a’) of
user programmable branch JMPA+ xcc, caddr | the instruction long word:
prediction CALLA- xcc, caddr |...+: branch ‘taken’ (a = 0)
CALLA+ xcc, caddr |...-: branch ‘not taken’ (a = 1)
Indirect branch instructions JMPI cc, [Rw] Unconditional: branch ‘taken’
CALLI cc, [Rw] Conditional: ‘not taken’
Relative branch instructions JMPR cg, rel Unconditional or backward:
with condition code branch ‘taken’

Conditional forward: ‘not taken’

Relative branch instructions | CALLR rel The branch is always taken
without condition code

Branch instructions with bit- | JB(C) bitaddr, rel Backward: branch ‘taken’

condition JNB(S) bitaddr, rel | Forward: ‘not taken’
Return instructions RET, RETP The branch is always taken
RETS, RETI

1) This bit can be also set/cleared automatically by the Assembler for generic JMPA and CALLA instructions
depending on the jump condition (condition is cc_Z: ‘not taken’, otherwise: ‘taken’).

4.2.2 Correctly Predicted Instruction Flow

Table 4-2 shows the continuous execution of instructions, assuming a 0-waitstate"
program memory. In this example, most of the instructions are executed in one CPU
cycle while instruction | ., takes two CPU cycles (general example for multicycle
instructions). The diagram shows the sequential instruction flow through the different
pipeline stages. Figure 4-3 shows the corresponding program memory section.

The instructions for the processing pipeline are fetched from the Instruction FIFO while
the IFU prefetches the next instructions to fill the FIFO. As long as the instruction flow is
correctly predicted by the IFU, both processes are independent.

1) For the exact Flash memory access timing and the required waitstates please refer to Section 3.10.2.

User’'s Manual 4-7 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

In this example with a fast Internal Program Memory, the Prefetcher is able to fetch more
instructions than the processing pipeline can execute. In T,,,, the FIFO and prefetch
buffer are filled and no further instructions can be prefetched. The PMU address stays
stable (T,,,) until a whole 64-bit double word can be buffered (T,,) in the 96-bit prefetch
buffer again.

Table 4-2 Correctly Predicted Instruction Flow (Sequential Execution)

Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5 Tn+6 Tn+7 Tn+8
PMU Address | l..16 | laaa |lase [laao |lacao [lawso | lavao |lawas | lasss
PMU Data 64bit Id+1 Id+2 Id+3 Id+4 Id+5 Id+5 Id+5 Id+5 Id+7
PREFETCH In+6 In+9 In+12 In+14 In+15 In+15 In+16 In+17 In+18
96-bit Buffer | ... s |1os

In+9 In+11 In+19 In+19 In+19 In+19 In+21
FETCH In+5 In+6 In+9 In+12 In+14 - In+15 In+16 In+17
Instruction lhs7 lhi1o | lhs1s
Buffer lh.s 11
FIFO contents |13 lneg | |6 |7 |7 I lnso lns10

In+5 In+8 In+11 In+13 In+14 In+14 In+15 In+16 In+17
Fetch from FIFO |1, lnis lns6 ln7 ln7 ln.s lnso lheto | et
DECODE In+3 In+4 In+5 In+6 In+6 In+7 In+8 In+9 In+10
ADDRESS In+2 In+3 In+4 In+5 In+6 In+6 In+7 In+8 In+9
MEMORY In+1 In+2 In+3 In+4 In+5 In+6 In+6 In+7 In+8
EXECUTE In In+1 In+2 In+3 In+4 In+5 In+6 In+6 In+7
WRITE BACK - In In+1 In+2 In+3 In+4 In+5 In+6 In+6
User’s Manual 4-8 V2.1, 2004-03

CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

n+21 n+21 n+20 n+20

A
]

a+40

n+19 n+18 n+17 n+16

A
Lol

a+32

n+16 n+15 n+15 n+14

A
p—

a+24

n+14 n+13 n+12 n+12

A
i

a+16

n+11 n+11 n+10 n+10

A

I

a+8

n+9 n+8 n+7 n+6

I

a
MCA04918

A

Figure 4-3 Program Memory Section for Correctly Predicted Flow

4.2.3 Incorrectly Predicted Instruction Flow

If the CPU detects that the IFU made an incorrect prediction of the instruction flow, then
the pipeline stages and the Instruction FIFO containing the wrong prefetched instructions
are canceled. The entire instruction fetch is restarted at the correct point of the program.

Table 4-3 shows the restarted execution of instructions, assuming a 0-waitstate program
memory. Figure 4-4 shows the corresponding program memory section.

During the cycle T,, the CPU detects an incorrectly prediction case which leads to a
canceling of the pipeline. The new address is transferred to the PMU in T,,; which
delivers the first data in the next cycle T, ,,. But, the target instruction crosses the 64-bit
memory boundary and a second fetch in T,,; is required to get the entire 32-bit
instruction. In T,,4, the Prefetch Buffer contains two 32-bit instructions while the first
instruction |, is directly forwarded to the Decode stage.

The prefetcher is now restarted and prefetches further instructions. In T, the
instruction 1,4 is forwarded from the Fetch Instruction Buffer directly to the Decode
stage as well. The Fetch row shows all instructions in the Fetch Instruction Buffer and
the instructions fetched from the Instruction FIFO. The instruction I,,; is the first
instruction fetched from the FIFO during T,,,s. During the same cycle, instruction | ,,,, was
still forwarded from the Fetch Instruction Buffer to the Decode stage.

User’s Manual 4-9 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

Table 4-3 Incorrectly Predicted Instruction Flow (Restarted Execution)

Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5 Tn+6 Tn+7 Tn+8
PMU Address |I... |, T T T T T
PMU Data 64bit |I... |- l lr o s [[1
PREFETCH |I... |- - - T T T T
FETCH Inext+2 - - - - Im+1 Im+2 Im+4 l...
Instruction ez | lmes
Buffer
Fetch from FIFO | — - - - - - O N S
DECODE Inext+1 - - - Im Im+1 Im+2 Im+3 Im+4
ADDRESS Inext - - - - Im Im+1 Im+2 Im+3
MEMORY Ibranch - - - - - Im Im+1 Im+2
EXECUTE In Ibranch - - - - - Im Im+1
WRITE BACK |- I, loranen | — - - - - .
[Lss Ines Imsa < I
- a+24
Im+4 Im+3 Im+3 Im+2 P I
- a+16
Im+2 Im+1 Im+1 Im P I
Im I I) e
< L
MCA04919

64-bit wide Program Memory with four 16-bit packages

Figure 4-4 Program Memory Section for Incorrectly Predicted Flow

User’'s Manual 4-10 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC1 64-'16 Derivatives
technologics System Units (Vol. 1 of 2)
Central Processing Unit (CPU)

4.3 Instruction Processing Pipeline

The XC164 uses five pipeline stages to execute an instruction. All instructions pass
through each of the five stages of the instruction processing pipeline. The pipeline stages
are listed here together with the 2 stages of the fetch pipeline:

15t .> PREFETCH: This stage prefetches instructions from the PMU in the predicted
order. The instructions are preprocessed in the branch detection unit to detect branches.
The prediction logic decides if the branches are assumed to be taken or not.

2"d > FETCH: The instruction pointer of the next instruction to be fetched is calculated
according to the branch prediction rules. For zero-cycle branch execution, the Branch
Folding Unit preprocesses and combines detected branches with the preceding
instructions. Prefetched instructions are stored in the instruction FIFO. At the same time,
instructions are transported out of the instruction FIFO to be executed in the instruction
processing pipeline.

39 .> DECODE: The instructions are decoded and, if required, the register file is
accessed to read the GPR used in indirect addressing modes.

4™ > ADDRESS: All the operand addresses are calculated. Register SP is
decremented or incremented for all instructions which implicitly access the system stack.

5t .> MEMORY: All the required operands are fetched.

6'" -> EXECUTE: An ALU or MAC-Unit operation is performed on the previously fetched
operands. The condition flags are updated. All explicit write operations to CPU-SFRs
and all auto-increment/auto-decrement operations of GPRs used as indirect address
pointers are performed.

7" -> WRITE BACK: All external operands and the remaining operands within the
internal DPRAM space are written back. Operands located in the internal SRAM are
buffered in the Write Back Buffer.

Specific so-called injected instructions are generated internally to provide the time
needed to process instructions requiring more than one CPU cycle for processing. They
are automatically injected into the decode stage of the pipeline, then they pass through
the remaining stages like every standard instruction. Program interrupt, PEC transfer,
and OCE operations are also performed by means of injected instructions. Although
these internally injected instructions will not be noticed in reality, they help to explain the
operation of the pipeline.

The performance of the CPU (pipeline) is decreased by bandwidth limitations (same
resource is accessed by different stages) and data dependencies between instructions.
The XC164’s CPU has dedicated hardware to detect and to resolve different kinds of
dependencies. Some of those dependencies are described in the following section.

Because up to five different instructions are processed simultaneously, additional
hardware has been dedicated to deal with dependencies which may exist between
instructions in different pipeline stages. This extra hardware supports ‘forwarding’ of the

User’'s Manual 4-11 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

operand read and write values and resolves most of the possible conflicts — such as
multiple usage of buses — in a time optimized way without performance loss. This
makes the pipeline unnoticeable for the user in most cases. However, there are some
rare cases in which the pipeline requires attention by the programmer. In these cases,
the delays caused by the pipeline conflicts can be used for other instructions to optimize
performance.

Note: The XC164 has a fully interlocked pipeline, which means that these conflicts do
not cause any malfunction. Instruction re-ordering is only required for performance
reasons.

The following examples describe the pipeline behavior in special cases and give
principle rules to improve the performance by re-ordering the execution of instructions.

User’'s Manual 4-12 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC1 64-'16 Derivatives
lechnologies System Units (Vol. 1 of 2)
Central Processing Unit (CPU)

4.3.1 Pipeline Conflicts Using General Purpose Registers

The GPRs are the working registers of the CPU and there are a lot of possible
dependencies between instructions using GPRs. A high-speed five-port register file
prevents bandwidth conflicts. Dedicated hardware is implemented to detect and resolve
the data dependencies. Special forwarding busses are used to forward GPR values from
one pipeline stage to another. In most cases, this allows the execution of instructions
without any delay despite of data dependencies.

Conflict GPRs_Resolved:

I, ADD RO,R1 ;Compute new value for RO
I.., ADD R3,RO ;Use RO again
I., ADD R6,R0O ;Use RO again
I.,, ADD R6,R1 ;Use R6 again
Ir1+4
Table 4-4 Resolved Pipeline Dependencies Using GPRs
Stage Tn Tn+1 Tn+2 Tn+31) Tn+42) Tn+53)
DECODE |(I,=ADD |l =ADD |l ,=ADD |l ,=ADD |I., s
RO, R1 R3,R0O |R6, R0 |R6, R1
ADDRESS ||, | |, =ADD |l ,=ADD |l,,=ADD |l ,=ADD |,
RO, R1 R3,R0 |R6, R0 |R6, R1
MEMORY ||, l,,-1 I, =ADD l,.,=ADD |I,,,=ADD |I,.5=ADD
RO, R1 R3, RO R6, RO R6, R1
EXECUTE |l |, I | =ADD |l_,,=ADD |I,,,=ADD
RO, R1 R3, RO R6, RO
WR.BACK ||, s o | | =ADD |I.,,=ADD
RO, R1 RS, RO
1) RO forwarded from EXECUTE to MEMORY.
2) RO forwarded from WRITE BACK to MEMORY.
3) R6 forwarded from EXECUTE to MEMORY.
User's Manual 4-13 V2.1, 2004-03

CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

However, if a GPR is used for indirect addressing the address pointer (i.e. the GPR) will
be required already in the DECODE stage. In this case the instruction is stalled in the
address stage until the operation in the ALU is executed and the result is forwarded to
the address stage.

Conflict GPRs Pointer Stall:

I, ADD RO,R1 ;Compute new value for RO
I.,, MOV R3, [RO] ;Use RO as address pointer
I.., ADD R6,RO

I.,, ADD R6,R1

I

n+4

Table 4-5 Pipeline Dependencies Using GPRs as Pointers (Stall)

Stage Tn Tn+1 Tn+21) Tn+32) Tn+4 Tn+5
DECODE |(I,=ADD |l ,=MOV |l ., lo o lva
RO, R1 R3, [RO]
ADDRESS || l,=ADD |l,,,=MOV |l ,,=MOV || ,=MOV |l
RO, R1 R3,[RO] |R3,[RO] |[R3,[RO]
MEMORY ||, L4 |, =ADD |- - l,,1 = MOV
RO, R1 RS, [RO]
EXECUTE ||, o L1 |, =ADD |- -~
RO, R1
WR.BACK ||, |4 | | | =ADD |-
RO, R1

1) New value of RO not yet available.
2) RO forwarded from EXECUTE to ADDRESS (next cycle).

User’'s Manual 4-14 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon
ec no Ogles/

XC164-16 Derivatives
System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

To avoid these stalls, one multicycle instruction or two single cycle instructions may be

inserted. These instructions must not update the GPR used for indirect addressing.
Conflict GPRs Pointer NoStall:

I, ADD RO,R1 ;Compute new value for RO
I.,, ADD R6,RO ;RO is not updated, just read
I,., ADD R6,R1
I, MOV R3, [RO] ;Use RO as address pointer
Ir1+4
Table 4-6 Pipeline Dependencies Using GPRs as Pointers (No Stall)
Stage Tn Tn+1 Tn+2 Tn+31) Tn+4 Tn+5
DECODE |I,=ADD |I,.,;=ADD |I,,,=ADD |l,,5=MOV |I,.4 lss
RO, R1 R6, RO R6, R1 R3, [RO]
ADDRESS ||, l,=ADD |I,,4=ADD |l ,,=ADD |I,,;=MOV |l ,4
RO, R1 R6, RO R6, R1 R3, [RO]
MEMORY ||, l,,-1 l,=ADD |I,,=ADD |l ,,=ADD |l ,;=MOV
RO, R1 R6, RO R6, R1 R3, [RO]
EXECUTE ||, 5 I 1 |, =ADD |I,.,,=ADD |I,,,=ADD
RO, R1 R6, RO R6, R1
WR.BACK |I , |3 5 I 1 l,=ADD |I,.,,=ADD
RO, R1 R6, RO

1) RO forwarded from EXECUTE to ADDRESS (next cycle).

4.3.2

In the case of read accesses using indirect addressing modes, the Address Generation
Unit uses a speculative addressing mechanism. The read data path to one of the
different memory areas (DPRAM, DSRAM, etc.) is selected according to a history table
before the address is decoded. This history table has one entry for each of the GPRs.
The entries store the information of the last accessed memory area using the
corresponding GPR. In the case of an incorrect prediction of the memory area, the read
access must be restarted.

Pipeline Conflicts Using Indirect Addressing Modes

It is recommended that the GPRs used for indirect addressing always point to the same
memory area. If an updated GPR points to a different memory area, the next read
operation will access the wrong memory area. The read access must be repeated, which
leads to pipeline stalls.

User’s Manual 4-15

CPUSV2_X, V2.2

V2.1, 2004-03

—

Infineon
ec no Ogles/

XC164-16 Derivatives

System Units (Vol. 1 of 2)

Conflict GPRs_ Pointer WrongHistory:

Central Processing Unit (CPU)

I, ADD R3, [RO] ;RO points to DPRAM (e.g.)
I,,, MOV RO,R4
I, MOV DPPX, ; change DPPx
I, ADD R6, [RO] ;RO now points to SRAM (e.g.)
I., MOV R6,R1
Im+2
Table 4-7 Pipeline Dependencies with Pointers (Valid Speculation)
Stage Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5
DECODE |I,=ADD |I,,;=MOQOV |l ., .3 (W |45
R3, [RO] | RO, R4
ADDRESS ||, |, = ADD l.,;=MOV |I_,, (I lia
R3, [RO] RO, R4
MEMORY ||, . l1 I, =ADD I, =MOV || ., lhes
R3, [RO] RO, R4
EXECUTE (I, I, l1 I, =ADD l,.1=MOV |l .,
RS, [RO] RO, R4
WR.BACK |14 |3 l-0 l-1 I, =ADD .1 = MOV
RS, [RO] RO, R4
Table 4-8 Pipeline Dependencies with Pointers (Invalid Speculation)
Stage Tm Tm+1 Tm+21) Tm+3 Tm+4 Tm+5
DECODE |I,=ADD |I,,;=MOV |l .,=MOV |I_., les s
R6, [RO] |R6, R1 R6, R1
ADDRESS ||, l,=ADD |I,=ADD |I,,=MOV |I,,, (P
R6, [RO] R6, [RO] R6, R1
MEMORY ||, |1 - l,=ADD |l_.,=MOV |I_.,
R6, [RO] R6, R1
EXECUTE ||, |0 I - l,=ADD |I..,=MOV
R6, [RO] R6, R1
WR.BACK |14 l-3 P ([- l,,= ADD
R6, [RO]
1) Access to location [R0O] must be repeated due to wrong history (target area was changed).
User's Manual 4-16 V2.1, 2004-03

CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

4.3.3 Pipeline Conflicts Due to Memory Bandwidth

Memory bandwidth conflicts can occur if instructions in the pipeline access the same
memory area at the same time. Special access mechanisms are implemented to
minimize conflicts. The DPRAM of the CPU has two independent read/write ports; this
allows parallel read and write operation without delays. Write accesses to the DSRAM
can be buffered in a Write Back Buffer until read accesses are finished.

All instructions except the CoXXX instructions can read only one memory operand per
cycle. A conflict between the read and one write access cannot occur because the
DPRAM has two independent read/write ports. Only other pipeline stall conditions can
generate a DPRAM bandwidth conflict. The DPRAM is a synchronous pipelined
memory. The read access starts with the valid addresses on the address stage. The data
are delivered in the Memory stage. If a memory read access is stalled in the Memory
stage and the following instruction on the Address stage tries to start a memory read, the
new read access must be delayed as well. But, this conflict is hidden by an already
existing stall of the pipeline.

User’'s Manual 4-17 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon
ec no Ogles/

XC164-16 Derivatives
System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

The CoXXX instructions are the only instructions able to read two memory operands per
cycle. A conflict between the two read and one pending write access can occur if all three
operands are located in the DPRAM area. This is especially important for performance
in the case of executing a filter routine. One of the operands should be located in the
DSRAM to guarantee a single-cycle execution of the CoXXX instructions.

Conflict DPRAM Bandwidth:

I, ADD opl,R1
I.., ADD R6,RO
I.,, CoMAC [IDXO0], [RO]
I,., MOV R3, [RO]
Ir1+4
Table 4-9 Pipeline Dependencies in Case of Memory Conflicts (DPRAM)
Stage Tn Tn+1 Tn+2 Tn+3 Tn+41) Tn+5
DECODE |I,=ADD |I,.,=ADD |l = l,.3=MOV ||, .4 (I
opi, R1 R6, RO CoMAC ... | RS, [RO]
ADDRESS ||, |, =ADD |l ,,=ADD |l .= l,.3=MOV |l ,,=MOV
op1, R1 R6, RO CoMAC ... | RS, [RO] RS, [RO]

MEMORY ||, I 1 |, =ADD |I,,,=ADD |l ., = I =

opi, R1 R6, RO CoMAC ... |CoMAC ...
EXECUTE ||, l,o l-1 |, =ADD |I,,;=ADD |-

opi, R1 R6, RO
WR.BACK | I, |3 -0 l-1 l,=ADD |I,.,=ADD
op1, R1 R6, RO

1) COMAC instruction stalls due to memory bandwidth conflict.
User’s Manual 4-18 V2.1, 2004-03

CPUSV2_X, V2.2

—

Infineon
ec no Ogles/

XC164-16 Derivatives

System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

The DSRAM is a single-port memory with one read/write port. To reduce the number of
bandwidth conflict cases, a Write Back Buffer is implemented. It has three data entries.
Only if the buffer is filled and a read access and a write access occur at the same time,
must the read access be stalled while one of the buffer entries is written back.

Conflict DSRAM Bandwidth:

I, ADD opl,R1
I,.., ADD R6,RO
I.., ADD R6,0p2
I,,; MOV R3,R2
Ir1+4
Table 4-10 Pipeline Dependencies in Case of Memory Conflicts (DSRAM)
Stage Tn Tn+1 Tn+2 Tn+3 Tn+41) Tn+5
DECODE |I|,=ADD l,.1=ADD |l,,,=ADD |l ,3=MOV || .4 lia
op1, R1 R6, RO R6, op2 R3, R2
ADDRESS ||, I, = ADD l,.;+=ADD [l,.»=ADD |l ,;=MOV |l ,;=MOV
opi, R1 R6, RO R6, op2 R3, R2 R3, R2
MEMORY ||, l,-1 In=ADD |I,,,=ADD |I,.,=ADD |l ,,=ADD
opi, R1 R6, RO R6, op2 R6, op2
EXECUTE ||, |0 l-1 I, = ADD l,.; =ADD |-
op1, R1 R6, RO
WR.BACK |I 4, |3 [0 I 1 |, = ADD l..1 =ADD
op1, R1 R6, RO
WB.Buffer | full full full full full full
1) ADD R®6, op2 instruction stalls due to memory bandwidth conflict.
User's Manual 4-19 V2.1, 2004-03

CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

4.3.4 Pipeline Conflicts Caused by CPU-SFR Updates

CPU-SFRs control the CPU functionality and behavior. Changes and updates of CSFRs
influence the instruction flow in the pipeline. Therefore, special care is required to ensure
that instructions in the pipeline always work with the correct CSFR values. CSFRs are
updated late on the EXECUTE stage of the pipeline. Meanwhile, without conflict
detection, the instructions in the DECODE, ADDRESS, and MEMORY stages would still
work without updated register values. The CPU detects conflict cases and stalls the
pipeline to guarantee a correct execution. For performance reasons, the CPU
differentiates between different classes of CPU-SFRs. The flow of instructions through
the pipeline can be improved by following the given rules used for instruction re-ordering.

There are three classes of CPU-SFRs:

e CSFRs not generating pipeline conflicts (ONES, ZEROS, MCW)
e CSFR result registers updated late in the EXECUTE stage, causing one stall cycle
* CSFRs affecting the whole CPU or the pipeline, causing canceling

CSFR Result Registers

The CSFR result registers MDH, MDL, MSW, MAH, MAL, and MRW of the ALU and
MAC-Unit are updated late in the EXECUTE stage of the pipeline. If an instruction
(except CoOSTORE) accesses explicitly these registers in the memory stage, the value
cannot be forwarded. The instruction must be stalled for one cycle on the MEMORY
stage.

User’'s Manual 4-20 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon
ec no Ogles/

XC164-16 Derivatives
System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

Conflict CSFR Update Stall:

I MUL RO,R1
I,., MOV R6,MDL
I,., ADD R6,R1
I,., MOV R3, [RO]
Ir1+4
Table 4-11 Pipeline Dependencies with Result CSFRs (Stall)
Stage Tn Tn+1 Tn+2 Tn+31) Tn+4 Tn+5
DECODE |I,=MUL l,.1=MQOV |I,,,=ADD |l,,3=MQOV |l,,5=MOV ||,
RO, R1 R6, MDL R6, R1 R3, [RO] R3, [RO]

ADDRESS ||, I, = MUL l,,4=MOV |l ,,=ADD |l,,,=ADD |l,,3=MOV

RO, R1 R6, MDL R6, R1 R6, R1 R3, [RO]
MEMORY ||, l-1 I, = MUL l,.1=MOV |[I,,;=MOV || ,,=ADD

RO, R1 R6, MDL R6, MDL R6, R1
EXECUTE || ; [0 (P l,=MUL |- .1 =MOV
RO, R1 R6, MDL
WR.BACK ||, 3 .o I l,=MUL |-
RO, R1

1) Cannot read MDL here.
User's Manual 4-21 V2.1, 2004-03

CPUSV2_X, V2.2

—

Infineon
ec no Ogles/

XC164-16 Derivatives

System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

By reordering instructions, the bubble in the pipeline can be filled with an instruction not
using this resource.

Conflict CSFR Update Resolved:

I, MUL RO,R1
I.., MOV R3, [RO]
I,,, MOV R6,MDL
I.., ADD R6,R1
Ir1+4
Table 4-12 Pipeline Dependencies with Result CSFRs (No Stall)
Stage Tn Tn+1 Tn+2 Tn+3 Tn+41) Tn+5
DECODE |I,=MUL |I,,=MOV |l ,,=MOV || ,=ADD |I., s
RO, R1 R3,[R0] |R6, MDL |R®6, R1
ADDRESS ||, l,=MUL |l_,,=MOV |l.,=MOV |l ,=ADD |I,
RO, R1 R3,[R0] |R6,MDL |R6, R1
MEMORY ||, L1 l,=MUL |l,,=MOV |l ,,=MOV |l ,=ADD
RO, R1 R3, [RO] R6, MDL |R6, R1
EXECUTE ||, | o | Il =MUL |l_,,=MOV |I_,=MOV
RO, R1 R3, [RO] R6, MDL
WR.BACK ||, | s o 4 l,=MUL |I_,,=MOV
RO, R1 R3, [RO]
1) MDL can be read now, no stall cycle necessary.
User’s Manual 4-22 V2.1, 2004-03

CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

CSFRs Affecting the Whole CPU

Some CSFRs affect the whole CPU or the pipeline before the Memory stage. The CPU-
SFRs CPUCONT1, CP, SP, STKUN, STKOV, VECSEG, TFR, and PSW affect the overall
CPU function, while the CPU-SFRs IDXO0, IDX1, QX1, QX0, DPPO, DPP1, DPP2, and
DPP3 only affect the DECODE, ADDRESS, and MEMORY stage when they are
modified explicitly. In this case the pipeline behavior depends on the instruction and
addressing mode used to modify the CSFR.

In the case of modification of these CSFRs by “POP CSFR” or by instructions using the
reg,#data16 addressing mode, a special mechanism is implemented to improve
performance during the initialization.

For further explanation, the instruction which modifies the CSFR can be called
“instruction_modify_CSFR”. This special case is detected in the DECODE stage when
the instruction_modify_CSFR enters the processing pipeline. Further on, instructions
described in the following list are held in the DECODE stage (all other instructions are
not held):

e Instructions using long addressing mode (mem)
* Instructions using indirect addressing modes ([R,], [R,+]...), except JMPl and CALLI
e ENWDT, DISWDT, EINIT

e All CoXXX instructions

If the CPUCONT1, CP, SP, STKUN, STKOV, VECSEG, TFR, or the PSW are modified
and the instruction_modify_ CSFR reaches the EXECUTE stage, the pipeline is
canceled. The modification affects the entire pipeline and the instruction prefetch. A
clean cancel and restart mechanism is required to guarantee a correct instruction flow.
In case of modification of IDXO0, IDX1, QX1, QX0, DPPO, DPP1, DPP2, or DPP3 only the
DECODE, ADDRESS, and MEMORY stages are affected and the pipeline needs not to
be canceled. The modification does not affect the instructions in the ADDRESS,
MEMORY stage because they are not using this resource. Other kinds of instructions are
held in the DECODE stage until the CSFR is modified.

The following example shows a case in which the pipeline is stalled. The instruction
“MOV Re6, R1” after the “MOV IDX1, #12” instruction which modifies the CSFR will be
held in DECODE Stage until the IDX1 register is updated. The next example shows an
optimized initialization routine.

User’'s Manual 4-23 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon
ec no Ogles/

XC164-16 Derivatives

System Units (Vol. 1 of 2)

Conflict Canceling:

Central Processing Unit (CPU)

I, MOV IDX1,#12

ns1 MOV R6,mem
I,., ADD R6,R1
I,.; MOV R3, [RO]
Table 4-13 Pipeline Dependencies with Control CSFRs (Canceling)
Stage Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5
DECODE |(I,=MOV |l ,,=MOV |l ,=MOV || .,=MOV |l ,,=MOV |l ,,=ADD

IDX1, #12 |R6, mem |R6, mem |R6, mem |R6, mem |R6, R1
ADDRESS ||, l[,=MOV |- — — .1 =MOV
IDX1, #12 R6, mem
MEMORY ||, (P l,=MOV |- — —
IDX1, #12
EXECUTE ||, (I 1 l,=MOV |- —
IDX1, #12
WR.BACK ||, -3 lo I [, =MOV |-
IDX1, #12

Conflict Canceling Optimized:

I, MOV IDX1,#12

I,,, MOV MAH, #23

I.,, MOV MAL,#25

I,.,3 MOV R3,#08

Ir1+4

Table 4-14 Pipeline Dependencies with Control CSFRs (Optimized)

Stage Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5

DECODE |I,=MOV |l,,1=MOQV |l ,,=MOV || ,,5=MOV ||, lhss

IDX1, #12 | MAH, #23 | MAL, #25 |RS3, #08
ADDRESS ||, l,=MOV |I,,;=MQOV |l,,,=MOV |l,,5=MOV ||,
IDX1, #12 | MAH, #23 | MAL, #25 |RS3, #08
MEMORY ||, l1 l,=MOV |I,,,=MOV ||,,,=MOV |I|,,3=MOV
IDX1, #12 | MAH, #23 | MAL, #25 |RS3, #08

EXECUTE || ; o l-1 l,=MOV |I,,,=MOV |l ,,=MOV
IDX1, #12 | MAH, #23 | MAL, #25

WR.BACK ||, I3 [o I [, =MOV |l ,,=MOV

IDX1, #12 | MAH, #23
User's Manual 4-24 V2.1, 2004-03

CPUSV2_X, V2.2

—

Infineon
ec no Ogles/

XC164-16 Derivatives
System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

For all the other instructions that modify this kind of CSFR, a simple stall and cancel
mechanism guarantees the correct instruction flow.

A possible explicit write-operation to this kind of CSFRs is detected on the MEMORY
stage of the pipeline. The following instructions on the ADDRESS and DECODE Stage
are stalled. If the instruction reaches the EXECUTE stage, the entire pipeline and the
Instruction FIFO of the IFU are canceled. The instruction flow is completely re-started.

Conflict Canceling Completely:

I, MOV PSW,R4
I,,, MOV R6,R1
I.., ADD R6,R1
I,.; MOV R3, [RO]
Ir1+4
Table 4-15 Pipeline Dependencies with Control CSFRs (Cancel All)
Stage Tn+1 Tn+2 Tn+3 Tn+4 Tn+5 Tn+6
DECODE |I,,,=MOV |I,,=ADD |I,,,=ADD |- — .1 = MOV

R6, R1 R6, R1 R6, R1 R6, R1
ADDRESS ||, =MOV |I,,,=MOV |l ,,=MOV |- — —

PSW, R4 |R6, R1 R6, R1
MEMORY ||, , [, =MOV |- — — —

PSW, R4
EXECUTE ||, l1 [, =MOV |- — —
PSW, R4
WR.BACK |15 o l-1 l,=MOV |- —
PSW, R4

User’s Manual 4-25 V2.1, 2004-03

CPUSV2_X, V2.2

—

: XC164-16 Derivatives
!nfmegon/ System Units (Vol. 1 of 2)
Central Processing Unit (CPU)

4.4 CPU Configuration Registers

The CPU configuration registers select a number of general features and behaviors of
the XC164’s CPU core. In general, these registers must not be modified by application
software (exceptions will be documented, e.g. in an errata sheet).

Note: The CPU configuration registers are protected by the register security mechanism
after the EINIT instruction has been executed.

CPUCONT1
CPU Control Register 1 SFR (FE18,/0C},) Reset Value: 0007
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
WDT | SGT |INTS
- - - - - - - - - VECSC cTL | Dis | exT BP | ZCJ
I‘\IN rw rw rw rw rw
Field Bits Type |Description
VECSC [6:5] rw Scaling Factor of Vector Table

00 Space between two vectors is 2 words"
01 Space between two vectors is 4 words
10 Space between two vectors is 8 words
11 Space between two vectors is 16 words

WDTCTL 4 rw Configuration of Watchdog Timer

0 DISWDT executable only until End Of Init?

1 DISWDT/ENWDT always executable
(enhanced WDT mode)

SGTDIS 3 rw Segmentation Disable/Enable Control
0 Segmentation enabled
1 Segmentation disabled

INTSCXT 2 rw Enable Interruptibility of Switch Context
0 Switch context is not interruptible
1 Switch context is interruptible

BP 1 rw Enable Branch Prediction Unit
0 Branch prediction disabled
1 Branch prediction enabled

ZCJ 0 rw Enable Zero Cycle Jump Function
0 Zero cycle jump function disabled
1 Zero cycle jump function enabled

1) The default value (2 words) is compatible with the vector distance defined in the C166 Family architecture.
2) The DISWDT (executed after EINIT) and ENWDT instructions are internally converted in a NOP instruction

User’'s Manual 4-26 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon

Techno\ogiSS/

XC164-16 Derivatives
System Units (Vol. 1 of 2)

CPUCON2

CPU Control Register 2

15 14 13

12 11

10

Central Processing Unit (CPU)

SFR (FE1A,/0D,) Reset Value: 8FBB,

9 8 7 6 5 4 3 2 1 0

T T T

FIFODEPTH

T

FIFOFED

BYP
PF

BYP
F

EIO
IAEN

STE
N

LFIC OV \RET|

RUN| ST DAID

SL

rw

rw

rw rw rw rw rw rw rw rw rw

Field

Bits

Type

Description

FIFODEPTH

[15:12]

r'w

FIFO Depth Configuration
0000 No FIFO (entries)
0001 One FIFO entry

1000 Eight FIFO entries
1001 reserved

1111 reserved

FIFOFED

[11:10]

r'w

FIFO Fed Configuration

00 FIFO disabled

01 FIFO filled with up to one instruction per cycle
10 FIFO filled with up to two instructions per cycle
11 FIFOfilled with up to three instruction per cycle

BYPPF

rw

Prefetch Bypass Control
0 Bypass path from prefetch to decode disabled
1 Bypass path from prefetch to decode available

BYPF

rw

Fetch Bypass Control
0 Bypass path from fetch to decode disabled
1 Bypass path from fetch to decode available

EIOIAEN

rw

Early 10 Injection Acknowledge Enable

0 Injection acknowledge by destructive read not
guaranteed

1 Injection acknowledge by destructive read
guaranteed

STEN

rw

Stall Instruction Enable (for debug purposes)
0 Stall Instruction disabled
1 Stall Instruction enabled (see example below)

LFIC

rw

Linear Follower Instruction Cache
0 Linear Follower Instruction Cache disabled
1 Linear Follower Instruction Cache enabled

User’s Manual
CPUSV2_X, V2.2

4-27 V2.1, 2004-03

—

Infi XC164-16 Derivatives
nmeon System Units (Vol. 1 of 2
schnologies ystem Units (Vol. 1 of 2)
Central Processing Unit (CPU)
Field Bits Type |Description
OVRUN 4 rw Pipeline Control
0 Overrun of pipeline bubbles not allowed
1 Overrun of pipeline bubbles allowed
RETST 3 rw Enable Return Stack
0 Return Stack is disabled
1 Return Stack is enabled
DAID 1 rw Disable Atomic Injection Deny
0 Injection-requests are denied during Atomic
1 Injection-requests are not denied during
Atomic
SL 0 rw Enables Short Loop Mode
0 Short loop mode disabled
1 Short loop mode enabled

Example for dedicated stall debug instructions:

STALLAM da,ha,dm,hm ;Opcode: 44 dahadmhm

STALLEW de,he,dw,hw ;Opcode: 45 dehedwhw
;Stalls the corresponding pipeline
;stage after “d” cycles for “h” cycles
; ("d” and “h” are 6-bit values)

Note: In general, these registers must not be modified by application software
(exceptions will be documented, e.g. in an errata sheet).

User’'s Manual 4-28 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC1 64-'16 Derivatives
lechnologies System Units (Vol. 1 of 2)
Central Processing Unit (CPU)

4.5 Use of General Purpose Registers

The CPU uses several banks of sixteen dedicated registers RO, R1, R2, ... R15, called
General Purpose Registers (GPRs), which can be accessed in one CPU cycle. The
GPRs are the working registers of the arithmetic and logic units and many also serve as
address pointers for indirect addressing modes.

The register banks are accessed via the 5-port register file providing the high access
speed required for the CPU’s performance. The register file is split into three
independent physical register banks. There are two types of register banks:

* Two local register banks which are a part of the register file
* A global register bank which is memory-mapped and cached in the register file

Core-RAM Registerfile
I
Global \ Local
\ A
\ : ‘ ‘ |V 1AGU Write Port
‘ N .
\ : ¢ I ALU Write Port
\
|
R15 } R15 —
R14 } R14 |-
R13 \ R13 —
Memory |
mapped R12 | R12 m
GPR Bank R11 \ R11 -
\
R10 \ R10 —
\
R R —
R15 9 | 9
. R8 ‘ R8 —
: R7 } R7 —
RO R6 \ R6 —
R5 | RE
R4 } R4 —
R3 \ R3 m
| ||
P R2 | R2
R1 } R1 —
RO \ RO —
\
\
’ T ”“ | ', AGU Read Port
\
- i : i | > ALU Read Port 1
\
: > ALU Read Port 2
\
\
MCD04873
Figure 4-5 Register File
User's Manual 4-29 V2.1, 2004-03

CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

Bitfield BANK in register PSW selects which of the three physical register banks is
activated. The selected bank can be changed explicitly by any instruction which writes
to the PSW, or implicitly by a RETI instruction, an interrupt or hardware trap. In case of
an interrupt, the selection of the register bank is configured via registers BNKSELXx in the
Interrupt Controller ITC. Hardware traps always use the global register bank.

The local register banks are built of dedicated physical registers, while the global register
bank represents a cache. The banks of the memory-mapped GPRs (global bank) are
located in the internal DPRAM. One bank uses a block of 16 consecutive words. A
Context Pointer (CP) register determines the base address of the current selected bank.
To provide the required access speed, the GPRs located in the DPRAM are cached in
the 5-port register file (only one memory-mapped GPR bank can be cached at the time).
If the global register bank is activated, the cache will be validated before further
instructions are executed. After validation, all further accesses to the GPRs are
redirected to the global register bank.

Internal DPRAM
/\

———— — — —

R15 (CP)+30
R14 (CP) + 28 \
R13
R12
R11
15 0 R10
16-Bit Context Pointer R9 R15
: R8 .

: R7

| R6

| R5

: R4 -
|

|

|

|

|

|

Register File

——

RO

R3 / Global local

R2 /
R1 (CP) +2 /
RO (CP) /

-~ MCA04921

Figure 4-6 Register Bank Selection via Register CP

User’s Manual 4-30 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

4.5.1 GPR Addressing Modes

Because the GPRs are the working registers and are accessed frequently, there are
three possible ways to access a register bank:

e Short GPR Address (mnemonic: Rw or Rb)
* Short Register Address (mnemonic: reg or bitoff)
* Long Memory Address (mnemonic: mem), for the global bank only

Short GPR Addresses specify the register offset within the current register bank
(selected via bitfield BANK). Short 4-bit GPR addresses can access all sixteen registers,
short 2-bit addresses (used by some instructions) can access the lower four registers.

Depending on whether a relative word (Rw) or byte (Rb) GPR address is specified, the
short GPR address is either multiplied by two (Rw) or not (Rb) before it is used to
physically access the register bank. Thus, both byte and word GPR accesses are
possible in this way.

Note: GPRs used as indirect address pointers are always accessed woradwise.

For the local register banks the resulting offset is used directly, for the global register
bank the resulting offset is logically added to the contents of register CP which points to
the memory location of the base of the current global register bank (see Figure 4-7).

Short 8-Bit Register Addresses within a range from FO, to FF,, interpret the four least
significant bits as short 4-bit GPR addresses, while the four most significant bits are
ignored. The respective physical GPR address is calculated in the same way as for short
4-bit GPR addresses. For single bit GPR accesses, the GPR’s word address is
calculated in the same way. The accessed bit position within the word is specified by a
separate additional 4-bit value.

12-Bit Context Pointer Specified by reg or bitoff
4-Bit GPR
T Address
g‘;fF? yte (1) For word GPR Internal
accesses DRAM
accesses
. Must be
+ within
the internal
DPRAM area > GPRs
/v
MCA04922

Figure 4-7 Implicit CP Use by Logical Short GPR Addressing Modes

User’s Manual 4-31 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

24-Bit Memory Addresses can be directly used to access GPRs located in the DPRAM
(not applicable for local register banks). In case of a memory read access, a hit detection
logic checks if the accessed memory location is cached in the global register bank. In
case of a cache hit, an additional global register bank read access is initiated. The data
that is read from cache will be used and the data that is read from memory will be
discarded. This leads to a delay of one CPU cycle (MOV R4, mem
[CP <mem < CP + 31]). In case of a memory write access, the hit detection logic
determines a cache hit in advance. Nevertheless, the address conversion needs one
additional CPU cycle. The value is directly written into the global register bank without
further delay (MOV mem, R4).

Note: The 24-bit GPR addressing mode is not recommended because it requires an
extra cycle for the read and write access.

Table 4-16 Addressing Modes to Access GPRs

Word Registers” Byte Registers Short Address?
Name Mem. Addr.®> |Name |Mem.Addr.’ |8-Bit |4-Bit |2-Bit
RO (CP)+0 RLO (CP)+0 FO, Oy Oy
R1 (CP) + 2 RHO (CP) + 1 F1, 1 1
R2 (CP) + RL1 (CP) + 2 F2, 2, 2,
R3 (CP) + RH1 (CP) + 3 F3, 3y 3,
R4 (CP) + 8 RL2 (CP) + 4 F4, 4,
R5 (CP) + 10 RH2 (CP) +5 F5, 5,
R6 (CP) + 12 RL3 (CP) + 6 Féy, 6y
R7 (CP) + 14 RH3 (CP) +7 F7, 7y
RS (CP) + 16 RL4 (CP) + 8 F8, 8,
R9 (CP) + 18 RH4 (CP) +9 Fo, 9,
R10 (CP) + 20 RL5 (CP) + 10 FA, A,
R11 (CP) + 22 RH5 (CP) + 11 FB, B,
R12 (CP) + 24 RL6 (CP) + 12 FC, Cy
R13 (CP) + 26 RH6 (CP) + 13 FD, Dy
R14 (CP) + 28 RL7 (CP) + 14 FE, E,
R15 (CP) + 30 RH7 (CP) + 15 FF, Fuy

1) The first 8 GPRs (R7 ... R0O) may also be accessed bytewise. Writing to a GPR byte does not affect the other
byte of the respective GPR.

2) Short addressing modes are usable for all register banks.
3) Long addressing mode only usable for the memory mapped global GPR bank.

User’s Manual 4-32 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

4.5.2 Context Switching

When a task scheduler of an operating system activates a new task or an interrupt
service routine is called or terminated, the working context (i.e. the registers) of the left
task must be saved and the working context of the new task must be restored. The CPU
context can be changed in two ways:

e Switching the selected register bank
* Switching the context of the global register

Switching the Selected Physical Register Bank

By updating bitfield BANK in register PSW the active register bank is switched
immediately. It is possible to switch between the current memory-mapped GPR bank
cached in the global register bank (BANK = 00g), local register bank 1 (BANK = 105),
and local register bank 2 (BANK = 11p).

In case of an interrupt service, the bank switch can be automatically executed by
updating bitfield BANK from registers BNKSELXx in the interrupt controller. By executing
a RETI instruction, bitfield BANK will automatically be restored and the context will
switched to the original register bank.

The switch between the three physical register banks of the register file can also be
executed by writing to bitfield BANK. Because of pipeline dependencies an explicit
change of register PSW must cancel the pipeline.

Global Bank Local Bank Global Bank

Execution Task A Execution Task B ExecutionTask A

4

v
A
v
A
v

Interrupt of E ; £
Task B xecution o

. RETI
recognsf' \

Figure 4-8 Context Switch by Changing the Physical Register Bank

MCA04877

After a switch to a local register bank, the new bank is immediately available. After
switching to the global register bank, the cached memory-mapped GPRs must be valid
before any further instructions can be executed. If the global register bank is not valid at
this time (in case if the context switch process has been interrupted), the cache
validation process is repeated automatically.

User’s Manual 4-33 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

Switching the Context of the Global Register Bank

The contents of the global register bank are switched by changing the base address of
the memory-mapped GPR bank. The base address is given by the contents of the
Context Pointer (CP).

After the CP has been updated, a state machine starts to store the old contents of the
global register bank and to load the new one. The store and load algorithm is executed
in nineteen CPU cycles: the execution of the cache validation process takes sixteen
cycles plus three cycles to stall an instruction execution to avoid pipeline conflicts upon
the completion of the validation process. The context switch process has two phases:

» Store phase: The contents of the global register bank is stored back into the DPRAM
by executing eight injected STORE instructions. After the last STORE instruction the
contents of the global register bank are invalidated.

* Load phase: The global register bank is loaded with the new context by executing
eight injected LOAD instructions. After the last LOAD instruction the contents of the
global register bank are validated.

The code execution is stopped until the global register bank is valid again. A hardware
interrupt can occur during the validation process. The way the validation process is
completed depends on the type of register bank selected for this interrupt:

e If the interrupt also uses a global register bank the validation process is finished
before executing the service routine (see Figure 4-9).

e If the interrupt uses a local register bank the validation process is interrupted and the
service routine is executed immediately (see Figure 4-10). After switching back to
the global register bank, the validation process is finished:

— If the interrupt occurred during the store phase, the entire validation process is
restarted from the very beginning.
— If the interrupt occurred during the load phase, only the load phase is repeated.

If a local-bank interrupt routine (Task B in Figure 4-11) is again interrupted by a global-
bank interrupt (Task C), the suspended validation process must be finished before code
of Task C can be executed. This means that the validation process of Task A does not
affect the interrupt latency of Task B but the latency of Task C.

Note: If Task C would immediately interrupt Task A, the register bank validation process
of Task A would be finished first. The worst case interrupt latency is identical in
both cases (see Figure 4-9 and Figure 4-11).

User’s Manual 4-34 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon
ec no OSD

XC164-16 Derivatives
System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

Global Bank
< Global Bank > < Global Bank > < oba an#

Execution Execution Execution Execution Execution

Task A Task B Task B Task B Task A
PEALLN LSS PRLAIS < p L,

Execution of Execution of
SCXT CP POP CP
Interrupt of Execution of
) TaskB = @ g—t e e RETI
Execution of recognized Register Bank Register Bank
SCXT CP Validation Validation
}L Process Process
-~ thggi_st;r_Ba_nk -- Started Finished Started Finished
Validation
Process
Started Finished MCA04874
Figure 4-9 Validation Process Interrupted by Global-Bank Interrupt
P Global Bank - Local Bank - Global Bank o
| L | L | »
Execution Execution
Task A P Execution Task B . Task A

Interrupt of

Execution of

Task B
Execution of recognized RETI
SCXT CP
“Register Bank “Register Bank
Validation Validation
Process Process
Started Stopped Restarted Finished
MCA04875
Figure 4-10 Validation Process Interrupted by Local-Bank Interrupt
Global Bank 4'—005” Bank Global Bank < Local Bank 4Global Bank
Execution Execution Execution Execution Execution
Task A Task B Task Task B Task A
as < as ask C < as < as

Interrupt of
Task C
recognized

Interrupt of
Task B

recognized Restarted

Execution of
SCXT CP

Register Bank
Validation
Process

Started Stopped

Register Bank
Validation
Process

Finished

Execution of
RETI

Execution of
RETI

MCA04876

Figure 4-11

User’s Manual
CPUSV2_X, V2.2

4-35

Validation Process Interrupted by Local- and Global-Bank Intr.

V2.1, 2004-03

—

: XC164-16 Derivatives
!nfmegon/ System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

The Context Pointer (CP)

This non-bit-addressable register selects the current global register bank context. It can
be updated via any instruction capable of modifying SFRs.

antext Pointer SFR (FE10,,/08,,) Reset Value: FC00,
15 14 13 12 11 | 10 | 9 8 7 6 5 4 3 2 1 0
1 1 1 1 cp 0
r r r r | | | | | rw | | | | | r
Field Bits Type | Description
cp [11:1] |rw Modifiable Portion of Register CP

Specifies the (word) base address of the current
global (memory-mapped) register bank.

When writing a value to register CP with bits CP[11:9]
= 000g, bits CP[11:10] are set to 115 by hardware.

Note: Itis the user’s responsibility to ensure that the physical GPR address specified via
CP register plus short GPR address is always an internal DPRAM location. If this
condition is not met, unexpected results may occur. Do not set CP below the
internal DPRAM start address.

The XC164 switches the complete memory-mapped GPR bank with a single instruction.
After switching, the service routine executes within its own separate context.

The instruction “SCXT CP, #New_Bank” pushes the value of the current context pointer
(CP) into the system stack and loads CP with the immediate value “New_Bank”, which
selects a new register bank. The service routine may now use its “own registers”. This
memory register bank is preserved when the service routine terminates, i.e. its contents
are available on the next call.

Before returning from the service routine (RETI), the previous CP is simply popped from
the system stack which returns the registers to the original bank.

Note: Due to the internal instruction pipeline, a write operation to the CP register stalls
the instruction flow until the register file context switch is really executed. The
instruction immediately following the instruction that updates CP register can use
the new value of the changed CP.

User’s Manual 4-36 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC1 64-'16 Derivatives
technologies System Units (Vol. 1 of 2)
Central Processing Unit (CPU)

4.6 Code Addressing

The XC164 provides a total addressable memory space of 16 Mbytes. This address
space is arranged as 256 segments of 64 Kbytes each. A dedicated 24-bit code address
pointer is used to access the memories for instruction fetches. This pointer has two parts:
an 8-bit code segment pointer CSP and a 16-bit offset pointer called Instruction Pointer
(IP). The concatenation of the CSP and IP results directly in a correct 24-bit physical
memory address.

Memory organized
in segments 15 87 CSP 0 15 IP 0
255 = =
FF'0000,,
254
FE'0000,,
| |
| |
1
01'0000,,
0 23 1615 0
00'0000,,
f ? Segment Offset
\ | Y
o | |
| e ———————— b —
== | MCA04920

Figure 4-12 Addressing via the Code Segment and Instruction Pointer

The Code Segment Pointer CSP selects the code segment being used at run-time to
access instructions. The lower 8 bits of register CSP select one of up 256 segments of
64 Kbytes each, while the higher 8 bits are reserved for future use. The reset value is
specified by the contents of the VECSEG register (Section 5.3).

Note: Register CSP can only be read but cannot be written by data operations.
In segmented memory mode (default after reset), register CSP is modified either

directly by JMPS and CALLS instructions, or indirectly via the stack by RETS and RETI
instructions.

In non-segmented memory mode (selected by setting bit SGTDIS in register
CPUCONT1), CSP is fixed to the segment of the instruction that disabled segmentation.
Modification by inter-segment CALLs or RETurns is no longer possible.

For processing an accepted interrupt or a TRAP, register CSP is automatically loaded
with the segment of the vector table (defined in register VECSEG).

User’s Manual 4-37 V2.1, 2004-03
CPUSV2_X, V2.2

—

: XC164-16 Derivatives
!nfmegon/ System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

Note: For the correct execution of interrupt tasks in non-segmented memory mode, the
contents of VECSEG must select the same segment as the current value of CSP,
i.e. the vector table must be located in the segment pointed to by the CSP.

CSP
Code Segment Pointer SFR (FE08,/04,) Reset Value: xxxxy,
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
- - - - - - - - SEGNR
- - h
Field Bits Type | Description
SEGNR [7:0] rh Specifies the code segment from which the current
instruction is to be fetched.

Note: After a reset, register CSP is automatically loaded from register VECSEG.

The Instruction Pointer IP determines the 16-bit intra-segment address of the currently
fetched instruction within the code segment selected by the CSP register. Register IP is
not mapped into the XC164’s address space; thus, it is not directly accessible by the
programmer. However, the IP can be modified indirectly via the stack by means of a
return instruction. IP is implicitly updated by the CPU for branch instructions and after
instruction fetch operations.

IP
Instruction Pointer mm=(===-l--) Reset Value: 0000,

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T T T T T T T T T T T

ip
QIO
Field Bits Type | Description
ip [15:1] |h Specifies the intra segment offset from which the

current instruction is to be fetched. IP refers to the
current segment <SEGNR>.

User’s Manual 4-38 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon
ec no Ogles/

XC164-16 Derivatives
System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

4.7

The Address Data Unit (ADU) contains two independent arithmetic units to generate,
calculate, and update addresses for data accesses, the Standard Address Generation
Unit (SAGU) and the DSP Address Generation Unit (DAGU). The ADU performs the
following major tasks:

Standard Address Generation (SAGU)
DSP Address Generation (DAGU)
Data Paging (SAGU)

Stack Handling (SAGU)

The SAGU supports linear arithmetic for the indirect addressing modes and also
generates the address in case of all other short and long addressing modes.

The DAGU contains an additional set of address pointers and offset registers which are
used in conjunction with the CoXXX instructions only.

Data Addressing

The CPU provides a lot of powerful addressing modes (short, long, indirect) for word,
byte, and bit data accesses. The different addressing modes use different formats and
have different scopes.

4.7.1 Short Addressing Modes

Short addressing modes allow access to the GPR, SFR or bit-addressable memory
space. All of these addressing modes use an offset (8/4/2 bits) together with an implicit
base address to specify a 24-bit physical address:

Table 4-17 Short Addressing Modes

Mnemo- | Base Offset ShortAddress | Scope of Access

hic Address" Range

Rw (CP) 2 x Rw 0...15 GPRs (word)

Rb (CP) 1 xRb 0...15 GPRs (byte)

reg O0’FEO0Q, |2 xreg 00y ... EF, SFRs (word, low byte)
00’FO00, |2 xreg 00y ... EF ESFRs (word, low byte)
(CP) 2 x (reg A OF) FOy ... FFy GPRs (word)
(CP) 1 x (reg A OF) FOy ... FFy GPRs (bytes)

bitoff 00’FD0O0,, |2 x bitoff 00 ... 7F4 RAM Bit word offset
00’FF00, |2 x (bitoff A 7F) |80y ... EF4 SFR Bit word offset
00’F100y, |2 x (bitoff A 7F) |80y ... EF4 ESFR Bit word offset
(CP) 2 X (bitoff A OF) FOy ... FFy GPR Bit word offset

bitaddr | Bit word Immediate bit 0...15 Any single bit
see bitoff position

1) Accesses to general purpose registers (GPRs) may also access local register banks, instead of using CP.

User’s Manual
CPUSV2_X, V2.2

4-39

V2.1, 2004-03

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

Physical Address = Base Address + A x Short Address
Note: A is 1 for byte GPRs, A is 2 for word GPRs.

Rw, Rb: Specifies direct access to any GPR in the currently active context (global
register bank or local register bank). Both ‘Rw’ and ‘Rb’ require four bits in the instruction
format. The base address of the global register bank is determined by the contents of
register CP. ‘Rw’ specifies a 4-bit word GPR address, ‘Rb’ specifies a 4-bit byte GPR
address within a local register bank or relative to (CP).

reg: Specifies direct access to any (E)SFR or GPR in the currently active context (global
or local register bank). The ‘reg’ value requires eight bits in the instruction format. Short
‘reg’ addresses in the range from 00, to EF,, always specify (E)SFRs. In that case, the
factor ‘A’ equates 2 and the base address is 00’FEQ0Q,, for the standard SFR area or
00’FO00 for the extended ESFR area. The ‘reg’ accesses to the ESFR area require a
preceding EXT*R instruction to switch the base address. Depending on the opcode,
either the total word (for word operations) or the low byte (for byte operations) of an SFR
can be addressed via ‘reg’. Note that the high byte of an SFR cannot be accessed via
the ‘reg’ addressing mode. Short ‘reg’ addresses in the range from FO, to FF, always
specify GPRs. In that case, only the lower four bits of ‘reg’ are significant for physical
address generation and, therefore, it is identical to the address generation described for
the ‘Rb’ and ‘Rw’ addressing modes.

bitoff: Specifies direct access to any word in the bit addressable memory space. The
‘bitoff’ value requires eight bits in the instruction format. The specified ‘bitoff range
selects different base addresses to generate physical addresses (see Table 4-17). The
‘bitoff’ accesses to the ESFR area require a preceding EXT*R instruction to switch the
base address.

bitaddr: Any bit address is specified by a word address within the bit addressable
memory space (see ‘bitoff’) and a bit position (‘bitpos’) within that word. Therefore,
‘bitaddr’ requires twelve bits in the instruction format.

User’'s Manual 4-40 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

4.7.2 Long Addressing Modes

Long addressing modes specify 24-bit addresses and, therefore, can access any word
or byte data within the entire address space. Long addresses can be specified in
different ways to generate the full 24-bit address:

* Use one of the four Data Page Pointers (DPP registers): The used 16-bit pointer
selects a DPP with bits 15 ... 14, bits 13 ... 0 specify the 14-bit data page offset (see
Figure 4-13).

e Select the used data page directly: The data page is selected by a preceeding
EXTP(R) instruction, bits 13 ... 0 of the used 16-bit pointer specify the 14-bit data
page offset.

e Select the used segment directly: The segment is selected by a preceeding
EXTS(R) instruction, the used 16-bit pointer specifies the 16-bit segment offset.

Note: Word accesses on odd byte addresses are not executed. A hardware trap will be

triggered.
16-Bit Data Address
Memory 1514 0
L 255 _
B | FF0000,, Selects DPP
- 254 9 DPP 0 !
FE'0000, [l— DPP3 - 11
I 1 - DPP2- 10
FooX K DPP1 - 01
F 1 (3 DPPO - 00
I i 23 1514 0
01'0000,,
- 0 .
B] 00'0000,, Page Page Offset
T T Segment Segment Offset
|
| ‘e L 77777777777 |
L ' MCA04924

Figure 4-13 Data Page Pointer Addressing

User’'s Manual 4-41 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon
ec no Ogles/

XC164-16 Derivatives
System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

Data Page Pointers DPP0O, DPP1, DPP2, DPP3

These four non-bit-addressable registers select up to four different data pages to be
active simultaneously at run-time. The lower 10 bits of each DPP register select one of
the 1024 possible 16-Kbyte data pages; the upper 6 bits are reserved for future use.

DPPO
Data Page Pointer 0

15 14 13 12 11 10

SFR (FE00,,/00,,) Reset Value: 0000,

9 8 7 6 5 4 3 2 1 0

DPPOPN

DPP1
Data Page Pointer 1

15 14 13 12 11 10

rw

SFR (FE02,/01,,)
9 8 7 6 5 4 3 2 1 0

Reset Value: 0001

DPP1PN

DPP2
Data Page Pointer 2

15 14 13 12 11 10

rw

SFR (FE04,,/02,,) Reset Value: 0002,

9 8 7 6 5 4 3 2 1 0

DPP2PN

DPP3
Data Page Pointer 3

15 14 13 12 11 10

rw

SFR (FE06,,/03,,) Reset Value: 0003,

9 8 7 6 5 4 3 2 1 0

DPP3PN

rw

Field Bits Type

Description

DPPxPN [9:0] |rw

Data Page Number of DPPx
Specifies the data page selected via DPPx.

User’s Manual
CPUSV2_X, V2.2

4-42 V2.1, 2004-03

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

The DPP registers allow access to the entire memory space in pages of 16 Kbytes each.
The DPP registers are implicitly used whenever data accesses to any memory location
are made via indirect or direct long 16-bit addressing modes (except for override
accesses via EXTended instructions and PEC data transfers). After reset, the Data Page
Pointers are initialized in such a way that all indirect or direct long 16-bit addresses result
in identical 18-bit addresses. This allows access to data pages 3 ... 0 within segment O
as shown in Figure 4-13. If the user does not want to use data paging, no further action
is required.

Data paging is performed by concatenating the lower 14 bits of an indirect or direct long
16-bit address with the contents of the DPP register selected by the upper two bits of the
16-bit address. The contents of the selected DPP register specify one of the 1024
possible data pages. This data page base address together with the 14-bit page offset
forms the physical 24-bit address (even if segmentation is disabled).

The selected number of segment address bits (via bitfield SALSEL) of the respective
DPP register is output on the respective segment address pins for all external data
accesses.

A DPP register can be updated via any instruction capable of modifying an SFR.

Note: Due to the internal instruction pipeline, a write operation to the DPPx registers
could stall the instruction flow until the DPP is actually updated. The instruction
that immediately follows the instruction which updates the DPP register can use
the new value of the changed DPPx.

EXTP(R): 151413 2
16-Bit Long Address

#pag r 4-Bit Page Offset

24-Bit Physical Address

EXTS(R): 15 0
16-Bit Long Address

#seg r 6-Bit Segment Offset

24-Bit Physical Address

MCA04925

Figure 4-14 Overriding the DPP Mechanism

User’'s Manual 4-43 V2.1, 2004-03
CPUSV2_X, V2.2

—

: XC164-16 Derivatives
!ntmegon/ System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

Note: The overriding page or segment may be specified as a constant (#pag, #seg) or
via a word GPR (Rw).

Table 4-18 Long Addressing Modes

Mnemonic |Base Address! | Offset Scope of Access
mem (DPPx) mem A 3FFF Any Word or Byte
mem pag mem A 3FFF, Any Word or Byte
mem seg mem Any Word or Byte

1) Represents either a 10-bit data page number to be concatenated with a 14-bit offset, or an 8-bit segment
number to be concatenated with a 16-bit offset.

User’'s Manual 4-44 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

4.7.3 Indirect Addressing Modes

Indirect addressing modes can be considered as a combination of short and long
addressing modes. This means that the “long” 16-bit pointer is provided indirectly by the
contents of a word GPR which itself is specified directly by a short 4-bit address
(‘Rw =0 ... 15).

There are indirect addressing modes, which add a constant value to the GPR contents
before the long 16-bit address is calculated. Other indirect addressing modes can
decrement or increment the indirect address pointers (GPR contents) by 2 or 1 (referring
to words or bytes) or by the contents of the offset registers QRO or QR1.

Table 4-19 Generating Physical Addresses from Indirect Pointers

Step | Executed Action Calculation Notes

1 Calculate the address of the | GPR Address = |see Table 4-17
indirect pointer (word GPR) |2 x Short Addr.
from its short address [+ (CP)]

2 Pre-decrement indirect (GPR Address) = | Optional step, executed only if
pointer (‘-Rw’) depending (GPR Address) | required by addressing mode
on datatype (A=1or2for |-A
byte or word operations)

3 Adjust the pointer by a Pointer = Optional step, executed only if
constant value (GPR Address) | required by addressing mode
(‘Rw + const16’) + Constant

4 Calculate the physical 24-bit | Physical Addr. = | Uses DPPs or page/segment
address using the resulting | Page/Segment + | override mechanisms,
pointer Pointer offset see Table 4-18

5 Post-in/decrement indirect | (GPR Address) = | Optional step, executed only if
pointer (‘Rwt’) depending | (GPR Address) |required by addressing mode
on datatype (A=1or2for |£A
byte or word operations), or
depending on offset
registers (A = QRx)"

1) Post-decrement and QRx-based modification is provided only for CoXXX instructions.

Note: Some instructions only use the lowest four word GPRs (R3 ... RO) as indirect
address pointers, which are specified via short 2-bit addresses in that case.

The following indirect addressing modes are provided:

User’'s Manual 4-45 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

Table 4-20 Indirect Addressing Modes

Mnemonic Particularities

[Rw] Most instructions accept any GPR (R15 ... RO) as indirect address
pointer. Some instructions accept only the lower four GPRs (RS ... R0).

[Rw+] The specified indirect address pointer is automatically post-incremented
by 2 or 1 (for word or byte data operations) after the access.

[-Rw] The specified indirect address pointer is automatically pre-decremented
by 2 or 1 (for word or byte data operations) before the access.

[Rw + The specified 16-bit constant is added to the indirect address pointer,

#data16] before the long address is calculated.

[Rw-] The specified indirect address pointer is automatically post-

decremented by 2 (word data operations) after the access.

[Rw + QRx] | The specified indirect address pointer is automatically post-incremented
by QRx (word data operations) after the access.

[Rw - QRXx] The specified indirect address pointer is automatically post-
decremented by QRX (word data operations) after the access.

The non-bit-addressable offset registers QRO and QR1 are used with CoXXX
instructions. For possible instruction flow stalls refer to Section 4.3.4.

ng:(s)et Register ESFR (F004,/02,) Reset Value: 0000,
15|14|13|12|11|10|9|8|7 6 5 4 3 2 1 0
QR 0
| rw | r
QR1
Offset Register ESFR (F006,/03,) Reset Value: 0000,
15]14]13]12]11]1019|8|7 6 5 4 3 2 1 0
QR 0
| rw | r
Field Bits Type | Description
QR [15:1] |rw Modifiable Portion of Register QRx

Specifies the 16-bit word offset address for indirect
addressing modes (LSB always zero).

User’'s Manual 4-46 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

4.7.4 DSP Addressing Modes

In addition to the Standard Address Generation Unit (SAGU), the DSP Address
Generation Unit (DAGU) provides an additional set of pointer registers (IDX0, IDX1) and
offset registers (QX0, QX1). The additional set of pointer registers IDX0 and IDX1 allows
the execution of DSP specific CoXXX instructions in one CPU cycle. An independent
arithmetic unit allows the update of these dedicated pointer registers in parallel with the
GPR-pointer modification of the SAGU. The DAGU only supports indirect addressing
modes that use the special pointer registers IDX0 and IDX1.

The address pointers can be used for arithmetic operations as well as for the special
CoMOV instruction. The generation of the 24-bit memory address is different:

e For CoMOV instructions, the IDX pointers are concatenated with the DPPs or the
selected page/segment address, as described for long addressing modes (see
Figure 4-13 for a summary).

* For arithmetic CoXXX instructions, the IDX pointers are automatically extended to
a 24-bit memory address pointing to the internal DPRAM area, as shown in
Figure 4-15.

IDXO0
Address Pointer SFR (FF08,/84,) Reset Value: 0000,
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
idx 0
| | | | | | | rW | | | | | | | r
IDX1
Address Pointer SFR (FFOA,/85,)) Reset Value: 0000,
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
idx 0
| rw | r
Field Bits Type | Description
idx [15:1] |[rw Modifiable Portion of Register IDXx
Specifies the 16-bit word address pointer

Note: During the initialization of the IDX registers, instruction flow stalls are possible. For
the proper operation, refer to Section 4.3.4.

User’'s Manual 4-47 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

There are indirect addressing modes which allow parallel data move operations before
the long 16-bit address is calculated (see Figure 4-16 for an example). Other indirect
addressing modes allow decrementing or incrementing the indirect address pointers
(IDXx contents) by 2 or by the contents of the offset registers QX0 and QX1 (used in
conjunction with the IDX pointers).

gﬁget Register ESFR (F000,/00,) Reset Value: 0000,
15114113]1211111019 8 7 6 5 4 3 2 1 0
qx 0
| | | | | | | rw | | | | | | | r
Qxi1
Offset Register ESFR (F002,/01,) Reset Value: 0000,
15|14|13|12|11|10|9|8|7|6|5|4|3|2|1 0
qx 0
I I I I I I | rw | r
Field Bits Type | Description
qx [15:1] |rw Modifiable Portion of Register QXx

Specifies the 16-bit word offset for indirect
addressing modes

Note: During the initialization of the QX registers, instruction flow stalls are possible. For
the proper operation, refer to Section 4.3.4.

User’'s Manual 4-48 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
lechnologies System Units (Vol. 1 of 2)
Central Processing Unit (CPU)
16-Bit IDX Pointer
Memory 15 1211 0
= 2 - —
02'0000,,
. 1 .
01'0000,,
— — —— — — .
~ = | DPRAM in Data Page 3
. |
i | 23 15 1211 0
' looooooo00f1111
00'0000,, }
4 |) 1
‘ L F iiiiiiiiiii

MCA04926

Figure 4-15 Arithmetic MAC Operations and Addressing via the IDX Pointers

Table 4-21 Generating Physical Addresses from Indirect Pointers (IDXx)

Step | Executed Action Calculation Notes

1 Determine the used IDXx --- -
pointer

2 Calculate an intermediate | Interm. Addr. = | Optional step, executed only if
long address for the parallel | (IDXx Address) |required by instruction
data move operation and +A CoXXXM and addressing
in/decrement indirect mode

pointer (‘IDXxt’) by 2
(A = 2), or depending on
offset registers (A = QXx)

3 Calculate long 16-bit Long Address = |—
address (IDXx Pointer)

4 Calculate the physical 24-bit | Physical Addr. = | Uses DPPs or page/segment
address using the resulting | Page/Segment + | override mechanisms, see

pointer Pointer offset Table 4-18 and Figure 4-15
5 Post-in/decrement indirect | (IDXx Pointer) = | Optional step, executed only if
pointer (‘IDXxt’) by 2 (IDXx Pointer) required by addressing mode

(A = 2), or depending on A
offset registers (A = QXx)

User’'s Manual 4-49 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon
ec no Ogles/

XC164-16 Derivatives
System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

The following indirect addressing modes are provided:

Table 4-22 DSP Addressing Modes

Mnemonic Particularities

[IDXX] Most CoXXX instructions accept IDXx (IDX0, IDX1) as an indirect
address pointer.

[IDXx+] The specified indirect address pointer is automatically post-incremented
by 2 after the access.

with parallel | In case of a CoXXXM instruction, the address stored in the specified

data move indirect address pointer is automatically pre-decremented by 2 for the
parallel move operation. The pointer itself is not pre-decremented.
Then, the specified indirect address pointer is automatically post-
incremented by 2 after the access.

[IDXx-] The specified indirect address pointer is automatically post-
decremented by 2 after the access.

with parallel | In case of a CoXXXM instruction, the address stored in the specified

data move indirect address pointer is automatically pre-incremented by 2 for the
parallel move operation. The pointer itself is not pre-incremented. Then,
the specified indirect address pointer is automatically post-decremented
by 2 after the access.

[IDXx + QXx] | The specified indirect address pointer is automatically post-incremented
by QXx after the access.

with parallel | In case of a CoXXXM instruction, the address stored in the specified

data move indirect address pointer is automatically pre-decremented by QXx for
the parallel move operation. The pointer itself is not pre-decremented.
Then, the specified indirect address pointer is automatically post-
incremented by QXx after the access.

[IDXx - QXx] | The specified indirect address pointer is automatically post-
decremented by QXx after the access.

with parallel | In case of a CoXXXM instruction, the address stored in the specified

data move indirect address pointer is automatically pre-incremented by QXx for the

parallel move operation. The pointer itself is not pre-incremented. Then,
the specified indirect address pointer is automatically post-decremented
by QXx after the access.

Note: An example for parallel data move operations can be found in Figure 4-16.

User’s Manual

4-50 V2.1, 2004-03

CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

The CoREG Addressing Mode

The CoSTORE instruction utilizes the special COREG addressing mode for immediate
storage of the MAC-Unit register after a MAC operation. The address of the MAC-Unit
register is coded in the CoSTORE instruction format as described in Table 4-23:

Table 4-23 Coding of the CoREG Addressing Mode

Mnemonic | Register Coding of wwww:w bits [31:27]
MSW MAC-Unit Status Word 00000
MAH MAC-Unit Accumulator High Word | 00001
MAS Limited MAC-Unit Accumulator High | 00010
Word
MAL MAC-Unit Accumulator Low Word 00100
MCW MAC-Unit Control Word 00101
MRW MAC-Unit Repeat Word 00110

The example in Figure 4-16 shows the complex operation of CoXXXM instructions with
a parallel move operation based on the descriptions about addressing modes given in
Section 4.7.3 (Indirect Addressing Modes) and Section 4.7.4 (DSP Addressing
Modes).

User’s Manual 4-51 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

CoXXXMxx [IDX0+], [R2+]

Address Operations

1) Calculate Pointer Addresses
IDXx = IDX0 R2 Address =CP + 2 x 2
(Global Register Bank)
2) Intermediate Address of Write Pointer
for the Parallel Move Operation
Intermediate Address = (IDX0) - 2

3) Calculate Long 16-Bit Address
Long Address 1 = (IDXO0) Long Address 2 = (R2)

4) Calculate 24-Bit Physical Address
Physical Address 1 = Page 3 + Page Offset Physical Address 2 = (DPPi) + Page Offset

5) Post Modify Address Pointer
(IDX0) = (IDXO0) + 2 (R2),.,=(R2) +2

new

Data Operations

1) Read Operands
op1 = (Physical Address 1) op2 = (Physical Address 2)

1) Write Operand op1
(Intermediate Address) = op1

‘(IDXO)new (Updated Pointer) ‘(R2)new (Updated Pointer)
op1 b op2 b
C <> (IDX0) (Read Pointer) <> (R2) (Read Pointer)
Paraiiel <+— Intermediate Address
aralle (Write Pointer for Parallel Move)

Move
MCA04928

Figure 4-16 Arithmetic MAC Operations with Parallel Move

User’s Manual 4-52 V2.1, 2004-03
CPUSV2_X, V2.2

—

: XC164-16 Derivatives
!ntmegon/ System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

4.7.5 The System Stack

The XC164 supports a system stack of up to 64 Kbytes. The stack can be located
internally in one of the on-chip memories or externally. The 16-bit Stack Pointer register
(SP) addresses the stack within a 64-Kbyte segment selected by the Stack Pointer
Segment register (SPSG). A virtual stack (usually bigger than 64 Kbytes) can be
implemented by software. This mechanism is supported by the Stack Overflow register
STKOV and the Stack Underflow register STKUN (see descriptions below).

The Stack Pointer Registers SP and SPSEG

Register SPSEG (not bitaddressable) selects the segment being used at run-time to
access the system stack. The lower eight bits of register SPSEG select one of up
256 segments of 64 Kbytes each, while the higher 8 bits are reserved for future use.

The Stack Pointer SP (not bitaddressable) points to the top of the system stack (TOS).
SP is pre-decremented whenever data is pushed onto the stack, and it is post-
incremented whenever data is popped from the stack. Therefore, the system stack
grows from higher towards lower memory locations.

System stack addresses are generated by directly extending the 16-bit contents of
register SP by the contents of register SPSG, as shown in Figure 4-17.

The system stack cannot cross a 64-Kbyte segment boundary.

. SPSEG
Stack Pointer
Segment 15 7 SPSEGNR 0 15 SP 0
255 — —
FF'OOOOH
254
FE'OOOOH
| |
| |
1
01'0000,,
0
23 16 15 0
00'0000,,
4
| \ | Y
A L |
[| MCA04929
Figure 4-17 Addressing via the Stack Pointer
User’s Manual 4-53 V2.1, 2004-03

CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
lechnologies System Units (Vol. 1 of 2)
Central Processing Unit (CPU)
SP
Stack Pointer Register SFR (FE12,,/09,,) Reset Value: FC00,
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sp 0
I rwh I r
Field Bits Type | Description
sp [15:1] [rwh Modifiable Portion of Register SP
Specifies the top of the system stack.

SPSEG
Stack Pointer Segment SFR (FF0C,/86,,) Reset Value: 0000,
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S N e e e SPSEGNR
w
Field Bits Type | Description
SPSEGNR [7:0] rw Stack Pointer Segment Number
Specifies the segment where the stack is located.

Note: SPSEG and SP can be updated via any instruction capable of modifying a 16-bit
SFR. Due to the internal instruction pipeline, a write operation to SPSG or SP
stalls the instruction flow until the register is really updated. The instruction
immediately following the instruction updating SPSG or SP can use the new value.
Extreme care should be taken when changing the contents of the stack pointer
registers. Improper changes may result in erroneous system behavior.

User’s Manual 4-54 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

The Stack Overflow/Underflow Pointers STKOV/STKUN

These limit registers (not bit-addressable) supervise the stack pointer. A trap is
generated when the stack pointer reaches its upper or lower limit. The Stack Pointer
Segment Register SPSG is not taken into account for the stack pointer comparison. The
system stack cannot cross a 64-Kbyte segment.

STKOV is compared with SP before each implicit write operation which decrements the
contents of SP (instructions CALLA, CALLI, CALLR, CALLS, PCALL, TRAP, SCXT, or
PUSH). If the contents of SP are equal to the contents of STKOV a stack overflow trap
is triggered.

STKUN is compared with SP before each implicit read operation which increments the
contents of SP (instructions RET, RETS, RETP, RETI, or POP). If the contents of SP are
equal to the contents of STKUN a stack underflow trap is triggered.

The Stack Overflow/Underflow Traps may be used in two different ways:

e Fatal error indication treats the stack overflow as a system error and executes the
associated trap service routine.
In case of a stack overflow trap, data in the bottom of the stack may have been
overwritten by the status information stacked upon servicing the trap itself.

e Virtual stack control allows the system stack to be used as a ‘Stack Cache’ for a
bigger external user stack: flush cache in case of an overflow, refill cache in case of
an underflow.

Scope of Stack Limit Control

The stack limit control implemented by the register pair STKOV and STKUN detects
cases in which the Stack Pointer (SP) crosses the defined stack area as a result of an
implicit change.

If the stack pointer was explicitly changed as a result of move or arithmetic instruction,
SP is not compared to the contents of STKOV and STKUN. In this case, a stack violation
will not be detected if the modified stack pointer is on or outside the defined limits, i.e.
below (STKOV) or above (STKUN). Stack overflow/underflow is detected only in case of
implicit SP modification.

SP may be operated outside the permitted SP range without triggering a trap. However,
if SP reaches the limit of the permitted SP range from outside the range as a result of an
implicit change (PUSH or POP, for example), the respective trap will be triggered.

Note: STKOV and STKUN can be updated via any instruction capable of modifying an
SFR. If a stack overflow or underflow event occurs in an ATOMIC/EXT sequence,
the stack operations that are part of the sequence are completed. The trap is
issued after the completion of the entire ATOMIC/EXT sequence.

User’s Manual 4-55 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
technologies System Units (Vol. 1 of 2)
Central Processing Unit (CPU)
STKOV
Stack Overflow Reg. SFR (FE14,,/0A,) Reset Value: FA00,
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
stkov 0
| rw | r
Field Bits Type | Description
stkov [15:1] |[rw Modifiable Portion of Register STKOV

Specifies the segment offset address of the lower
limit of the system stack.

STKUN
Stack Underflow Reg. SFR (FE16,,/0B,,) Reset Value: FC00,
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
stkun 0
| rw | r
Field Bits Type | Description
stkun [15:1] |[rw Modifiable Portion of Register STKUN

Specifies the segment offset address of the upper
limit of the system stack.

User’s Manual 4-56 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

4.8 Standard Data Processing

All standard arithmetic, shift-, and logical operations are performed in the 16-bit ALU. In
addition to the standard functions, the ALU of the XC164 includes a bit-manipulation unit
and a multiply and divide unit. Most internal execution blocks have been optimized to
perform operations on either 8-bit or 16-bit numbers. After the pipeline has been filled,
most instructions are completed in one CPU cycle. The status flags are automatically
updated in register PSW after each ALU operation and reflect the current state of the
microcontroller. These flags allow branching upon specific conditions. Support of both
signed and unsigned arithmetic is provided by the user selectable branch test. The
status flags are also preserved automatically by the CPU upon entry into an interrupt or
trap routine. Another group of bits represents the current CPU interrupt status. Two
separate bits (USRO0 and USR1) are provided as general purpose flags.

II;‘rsglgessor Status Word SFRb Reset Value: 0000,
15|14|13|12 1110 9|8 7 6 5 4 3 2 1 0
ILVL IEN | - BANK U?R UﬁR E|Z |V | C|N
I rwh I rw - rwh rwh rwh r rwh rwh rwh rwh rwh
Field Bits Type | Description
ILVL [15:12] | rwh CPU Priority Level

Oy Lowest Priority

Fy Highest Priority

IEN 11 rw Global Interrupt/PEC Enable Bit

0 Interrupt/PEC requests are disabled

1 Interrupt/PEC requests are enabled
BANK [9:8] rwh Reserved for Register File Bank Selection

00 Global register bank
01 Reserved

10 Local register bank 1
11 Local register bank 2

USR1 7 rwh General Purpose Flag
May be used by application

USRO 6 rwh General Purpose Flag
May be used by application

User’s Manual 4-57 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
technologies System Units (Vol. 1 of 2)
Central Processing Unit (CPU)
Field Bits Type |Description
5 r Multiplication/Division in Progress

Note: Always set to 0 (MUL/DIV not interruptible),
for compatibility with existing software.

E 4 rwh End of Table Flag
0 Source operand is neither 8000, nor 80,
1 Source operand is 8000, or 80y

y4 3 rwh Zero Flag
0 ALU result is not zero
1 ALU result is zero

\" 2 rwh Overflow Flag

0 No Overflow produced
0 Overflow produced

C 1 rwh Carry Flag
0 No carry/borrow bit produced
1 Carry/borrow bit produced

N 0 rwh Negative Result
0 ALU result is not negative
1 ALU result is negative

ALU/MAC Status (N, C, V, Z, E, USRO, USR1)

The condition flags (N, C, V, Z, E) within the PSW indicate the ALU status after the most
recently performed ALU operation. They are set by most of the instructions according to
specific rules which depend on the ALU or data movement operation performed by an
instruction.

After execution of an instruction which explicitly updates the PSW register, the condition
flags cannot be interpreted as described below because any explicit write to the PSW
register supersedes the condition flag values which are implicitly generated by the CPU.
Explicitly reading the PSW register supplies a read value which represents the state of
the PSW regqister after execution of the immediately preceding instruction.

Note: After reset, all of the ALU status bits are cleared.

N-Flag: For most of the ALU operations, the N-flag is set to 1, if the most significant bit
of the result contains a 1; otherwise, it is cleared. In the case of integer operations, the
N-flag can be interpreted as the sign bit of the result (negative: N = 1, positive: N = 0).
Negative numbers are always represented as the 2’s complement of the corresponding
positive number. The range of signed numbers extends from -8000, to +7FFF,, for the
word data type, or from -80,, to +7F, for the byte data type. For Boolean bit operations
with only one operand, the N-flag represents the previous state of the specified bit. For

User’s Manual 4-58 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

Boolean bit operations with two operands, the N-flag represents the logical XORing of
the two specified bits.

C-Flag: After an addition, the C-flag indicates that a carry from the most significant bit of
the specified word or byte data type has been generated. After a subtraction or a
comparison, the C-flag indicates a borrow which represents the logical negation of a
carry for the addition.

This means that the C-flag is set to 1, if no carry from the most significant bit of the
specified word or byte data type has been generated during a subtraction, which is
performed internally by the ALU as a 2’s complement addition, and, the C-flag is cleared
when this complement addition caused a carry.

The C-flag is always cleared for logical, multiply and divide ALU operations, because
these operations cannot cause a carry.

For shift and rotate operations, the C-flag represents the value of the bit shifted out last.
If a shift count of zero is specified, the C-flag will be cleared. The C-flag is also cleared
for a prioritize ALU operation, because a 1 is never shifted out of the MSB during the
normalization of an operand.

For Boolean bit operations with only one operand, the C-flag is always cleared. For
Boolean bit operations with two operands, the C-flag represents the logical ANDing of
the two specified bits.

V-Flag: For addition, subtraction, and 2’s complementation, the V-flag is always set to 1
if the result exceeds the range of 16-bit signed numbers for word operations (-8000y to
+7FFF,), or 8-bit signed numbers for byte operations (-80, to +7F,). Otherwise, the
V-flag is cleared. Note that the result of an integer addition, integer subtraction, or 2’s
complement is not valid if the V-flag indicates an arithmetic overflow.

For multiplication and division, the V-flag is set to 1 if the result cannot be represented
in a word data type; otherwise, it is cleared. Note that a division by zero will always cause
an overflow. In contrast to the result of a division, the result of a multiplication is valid
whether or not the V-flag is set to 1.

Because logical ALU operations cannot produce an invalid result, the V-flag is cleared
by these operations.

The V-flag is also used as a ‘Sticky Bit’ for rotate right and shift right operations. With
only using the C-flag, a rounding error caused by a shift right operation can be estimated
up to a quantity of one half of the LSB of the result. In conjunction with the V-flag, the
C-flag allows evaluation of the rounding error with a finer resolution (see Table 4-24).

For Boolean bit operations with only one operand, the V-flag is always cleared. For
Boolean bit operations with two operands, the V-flag represents the logical ORing of the
two specified bits.

User’s Manual 4-59 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

Table 4-24 Shift Right Rounding Error Evaluation

C-Flag V-Flag Rounding Error Quantity

0 0 No rounding error

0 1 0 < Rounding error < '/, LSB
1 0 Rounding error = '/, LSB

1 1 Rounding error > '/, LSB

Z-Flag: The Z-flag is normally set to 1 if the result of an ALU operation equals zero,
otherwise it is cleared.

For the addition and subtraction with carry, the Z-flag is only set to 1, if the Z-flag already
contains a 1 and the result of the current ALU operation also equals zero. This
mechanism is provided to support multiple precision calculations.

For Boolean bit operations with only one operand, the Z-flag represents the logical
negation of the previous state of the specified bit. For Boolean bit operations with two
operands, the Z-flag represents the logical NORing of the two specified bits. For the
prioritize ALU operation, the Z-flag indicates whether the second operand was zero.

E-Flag: End of table flag. The E-flag can be altered by instructions which perform ALU
or data movement operations. The E-flag is cleared by those instructions which cannot
be reasonably used for table search operations. In all other cases, the E-flag value
depends on the value of the source operand to signify whether the end of a search table
is reached or not. If the value of the source operand of an instruction equals the lowest
negative number which is representable by the data format of the corresponding
instruction (8000, for the word data type, or 80 for the byte data type), the E-flag is set
to 1; otherwise, it is cleared.

General Control Functions (USR0, USR1, BANK)

A few bits in register PSW are dedicated to general control functions. Thus, they are
saved and restored automatically upon task switches and interrupts.

USRO/USR1-Flags: These bits can be set automatically during the execution of
repeated MAC instructions. These bits can also be used as general flags by an
application.

BANK: Bitfield BANK selects the currently active register bank (local or global). Bitfield
BANK is updated implicitly by hardware upon entering an interrupt service routine, and
by a RETI instruction. It can be also modified explicitly via software by any instruction
which can write to PSW.

CPU Interrupt Status (IEN, ILVL)

IEN: The Interrupt Enable bit allows interrupts to be globally enabled (IEN =1) or
disabled (IEN = 0).

User’s Manual 4-60 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

ILVL: The four-bit Interrupt Level field (ILVL) specifies the priority of the current CPU
activity. The interrupt level is updated by hardware on entry into an interrupt service
routine, but it can also be modified via software to prevent other interrupts from being
acknowledged. If an interrupt level 15 has been assigned to the CPU, it has the highest
possible priority; thus, the current CPU operation cannot be interrupted except by
hardware traps or external non-maskable interrupts. For details refer to Chapter 5.

After reset, all interrupts are globally disabled, and the lowest priority (ILVL =0) is
assigned to the initial CPU activity.

4.8.1 16-bit Adder/Subtracter, Barrel Shifter, and 16-bit Logic Unit

All standard arithmetic and logical operations are performed by the 16-bit ALU. In case
of byte operations, signals from bits 6 and 7 of the ALU result are used to control the
condition flags. Multiple precision arithmetic is supported by a “CARRY-IN” signal to the
ALU from previously calculated portions of the desired operation.

A 16-bit barrel shifter provides multiple bit shifts in a single cycle. Rotations and
arithmetic shifts are also supported.

4.8.2 Bit Manipulation Unit

The XC164 offers a large number of instructions for bit processing. These instructions
either manipulate software flags within the internal RAM, control on-chip peripherals via
control bits in their respective SFRs, or control 10 functions via port pins.

Unlike other microcontrollers, the XC164 features instructions that provide direct access
to two operands in the bit addressable space without requiring them to be moved to
temporary locations. Multiple bit shift instructions have been included to avoid long
instruction streams of single bit shift operations. These instructions require a single CPU
cycle.

The instructions BSET, BCLR, BAND, BOR, BXOR, BMOV, BMOVN explicitly set or
clear specific bits. The bitfield instructions BFLDL and BFLDH allow manipulation of up
to 8 bits of a specific byte at one time. The instructions JBC and JNBS implicitly clear or
set the specified bit when the jump is taken. The instructions JB and JNB (also
conditional jump instructions that refer to flags) evaluate the specified bit to determine if
the jump is to be taken.

Note: Bit operations on undefined bit locations will always read a bit value of ‘0’, while
the write access will not affect the respective bit location.

All instructions that manipulate single bits or bit groups internally use a read-modify-write
sequence that accesses the whole word containing the specified bit(s).

This method has several consequences:

e The read-modify-write approach may be critical with hardware-affected bits. In these
cases, the hardware may change specific bits while the read-modify-write operation

User’s Manual 4-61 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

is in progress; thus, the writeback would overwrite the new bit value generated by the
hardware. The solution is provided by either the implemented hardware protection
(see below) or through special programming (see Section 4.3).

* Bits can be modified only within the internal address areas (internal RAM and SFRs).
External locations cannot be used with bit instructions.

The upper 256 bytes of SFR area, ESFR area, and internal DPRAM are bit-addressable;
S0, the register bits located within those respective sections can be manipulated directly
using bit instructions. The other SFRs must be accessed byte/word wise.

Note: All GPRs are bit-addressable independently from the allocation of the register
bank via the Context Pointer (CP). Even GPRs which are allocated to non-bit-
addressable RAM locations provide this feature.

Protected bits are not changed during the read-modify-write sequence, such as when
hardware sets an interrupt request flag between the read and the write of the read-
modify-write sequence. The hardware protection logic guarantees that only the intended
bit(s) is/are affected by the write-back operation. A summary of the protected bits
implemented in the XC164 can be found in Section 2.7.

Note: If a conflict occurs between a bit manipulation generated by hardware and an
intended software access, the software access has priority and determines the
final value of the respective bit.

User’s Manual 4-62 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

4.8.3 Multiply and Divide Unit

The XC164’s multiply and divide unit has two separated parts. One is the fast 16 x 16-bit
multiplier that executes a multiplication in one CPU cycle. The other one is a division sub-
unit which performs the division algorithmin 18 ... 21 CPU cycles (depending on the data
and division types). The divide instruction requires four CPU cycles to be executed. For
performance reasons, the rest of the division algorithm runs in the background during the
following seventeen CPU cycles, while further instructions are executed in parallel.
Interrupt tasks can also be started and executed immediately without any delay. If an
instruction (from the original instruction stream or from the interrupt task) tries to use the
unit while a division is still running, the execution of this new instruction is stalled until the
previous division is finished.

To avoid these stalls, the multiply and division unit should not be used during the first
fourteen CPU cycles of the interrupt tasks. For example, this requires up to fourteen one-
cycle instructions to be executed between the interrupt entry and the first instruction
which uses the multiply and divide unit again (worst case).

Multiplications and divisions implicitly use the 32-bit multiply/divide register MD
(represented by the concatenation of the two non-bit-addressable data registers MDH
and MDL) and the associated control register MDC. This bit-addressable 16-bit register
is implicitly used by the CPU when it performs a division or multiplication in the ALU.

After a multiplication, MD represents the 32-bit result. For long divisions, MD must be
loaded with the 32-bit dividend before the division is started. After any division, register
MDH represents the 16-bit remainder, register MDL represents the 16-bit quotient.

mgll:iplleivide High Reg. SFR (FEOC,,/06,,) Reset Value: 0000,
15|14|13|12|11|10|9 8|7 6 5 4 3 2 1 0
mdh
rwh

Field Bits Type | Description
mdh [15:0] |rwh High Part of MD

The high order sixteen bits of the 32-bit multiply and
divide register MD.

User’s Manual 4-63 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon < 3(0134-'16 [\),erllv1at|\;ezs
cchnologies ystem Units (Vol. 1 of 2)
Central Processing Unit (CPU)
MDL
Multiply/Divide Low Reg. SFR (FEOE,/07,) Reset Value: 0000,
i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
mdl
| | | | | | | rv\llh | | | | | | |
Field Bits Type | Description
mdl [15:0] [rwh Low Part of MD

The low order sixteen bits of the 32-bit multiply and
divide register MD.

Whenever MDH or MDL is updated via software, the Multiply/Divide Register In Use flag
(MDRIU) in the Multiply/Divide Control register (MDC) is set to ‘1’. The MDRIU flag is
cleared, whenever register MDL is read via software.

MDC
Multiply/Divide Control Reg. SFR (FFOE,/87,) Reset Value: 0000,
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
i i i i i))) i i _ |MDR| i i i
V)
- - - - - - r(w)h
Field Bits Type | Description
MDRIU 4 rwh Multiply/Divide Register In Use
0 Cleared when MDL is read via software.
1 Set when MDL or MDH is written via software,
or when a multiply or divide instruction is
executed.

Note: The MDRIU flag indicates the usage of register MD (MDL and MDH). In this case
MD must be saved prior to a new multiplication or division operation.

User’s Manual 4-64 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC1 64-'16 Derivatives
technologics System Units (Vol. 1 of 2)
Central Processing Unit (CPU)

4.9 DSP Data Processing (MAC Unit)

The new CoXXX arithmetic instructions are performed in the MAC unit. The MAC unit
provides single-instruction-cycle, non-pipelined, 32-bit additions; 32-bit subtraction; right
and left shifts; 16-bit by 16-bit multiplication; and multiplication with cumulative
subtraction/addition. The MAC unit includes the following major components, shown in
Figure 4-18:

 16-bit by 16-bit signed/unsigned multiplier with signed result"
* Concatenation Unit

e Scaler (one-bit left shifter) for fractional computing

* 40-bit Adder/Subtracter

* 40-bit Signed Accumulator

e Data Limiter

* Accumulator Shifter

* Repeat Counter

16-Bit Input Operands Repeat Counter

16 16 16 16 MCW Register
. Signed/
Concatr?i?anon Unsigned
Multiplier
32 32
32
Signed
exttL— T 40

40-Bit Adder/Subtracter
Round + Saturation

40

ACCU-Shifter

40-Bit Signed
Accumulator 40

40

MSW Register

Limiter

MCA04930

Figure 4-18 Functional MAC Unit Block Diagram

1) The same hardware-multiplier is used in the ALU.

User’s Manual 4-65 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

The working register of the MAC unit is a dedicated 40-bit accumulator register. A set of
consistent flags is automatically updated in status register MSW after each MAC
operation. These flags allow branching on specific conditions. Unlike the PSW flags,
these flags are not preserved automatically by the CPU upon entry into an interrupt or
trap routine. All dedicated MAC registers must be saved on the stack if the MAC unit is
shared between different tasks and interrupts. General properties of the MAC unit are
selected via the MAC control word MCW.

mg‘(,:VControl Word SFR (FFDC,/EE},) Reset Value: 0000,

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - MPMS| - | - | - | - - -] - -]
rw rw - - - - - - - - -

Field Bits Type |Description

MP 10 rw One-Bit Scaler Control

0 Multiplier product shift disabled
1 Multiplier product shift enabled for signed
multiplications

MS 9 rw Saturation Control

0 Saturation disabled

1 Saturation to 32-bit value enabled
4.9.1 Representation of Numbers and Rounding

The XC164 supports the 2's complement representation of binary numbers. In this
format, the sign bit is the MSB of the binary word. This is set to zero for positive numbers
and set to one for negative numbers. Unsigned numbers are supported only by
multiply/multiply-accumulate instructions which specify whether each operand is signed
or unsigned.

In 2’s complement fractional format, the N-bit operand is represented using the 1.[N-1]
format (1 signed bit, N-1 fractional bits). Such a format can represent numbers between
-1 and +1 - 2N, This format is supported when bit MP of register MCW is set.

The XC164 implements 2’s complement rounding. With this rounding type, one is added
to the bit to the right of the rounding point (bit 15 of MAL), before truncation (MAL is
cleared).

User’s Manual 4-66 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

4.9.2 The 16-bit by 16-bit Signed/Unsigned Multiplier and Scaler

The multiplier executes 16-bit by 16-bit parallel signed/unsigned fractional and integer
multiplication in one CPU-cycle. The multiplier allows the multiplication of unsigned and
signed operands. The result is always presented in a signed fractional or integer format.

The result of the multiplication feeds a one-bit scaler to allow compensation for the extra
sign bit gained in multiplying two 16-bit 2’s complement numbers.

4.9.3 Concatenation Unit

The concatenation unit enables the MAC unit to perform 32-bit arithmetic operations in
one CPU cycle. The concatenation unit concatenates two 16-bit operands to a 32-bit
operand before the 32-bit arithmetic operation is executed in the 40-bit adder/subtracter.
The second required operand is always the current accumulator contents. The
concatenation unit is also used to pre-load the accumulator with a 32-bit value.

4.9.4 One-bit Scaler

The one-bit scaler can shift the result of the concatenation unit or the output of the
multiplier one bit to the left. The scaler is controlled by the executed instruction for the
concatenation or by control bit MP in register MCW.

If bit MP is set the product is shifted one bit to the left to compensate for the extra sign
bit gained in multiplying two 16-bit 2’s-complement numbers. The enabled automatic
shift is performed only if both input operands are signed.

4.9.5 The 40-bit Adder/Subtracter

The 40-bit Adder/Subtracter allows intermediate overflows in a series of
multiply/accumulate operations. The Adder/Subtracter has two input ports. The 40-bit
port is the feedback of the accumulator output through the ACCU-Shifter to the
Adder/Subtracter. The 32-bit port is the input port for the operand coming from the one-
bit Scaler. The 32-bit operands are signed and extended to 40 bits before the
addition/subtraction is performed.

The output of the Adder/Subtracter goes to the accumulator. It is also possible to round
the result and to saturate it on a 32-bit value automatically after every accumulation. The
round operation is performed by adding 00°0000’8000, to the result. Automatic
saturation is enabled by setting the saturation control bit MS in register MCW.

When the accumulator is in the overflow saturation mode and an overflow occurs, the
accumulator is loaded with either the most positive or the most negative value
representable in a 32-bit value, depending on the direction of the overflow as well as on
the arithmetic used. The value of the accumulator upon saturation is either
00’7FFF’FFFF (positive) or FF’8000°0000 (negative).

User’s Manual 4-67 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

4.9.6 The Data Limiter

Saturation arithmetic is also provided to selectively limit overflow when reading the
accumulator by means of a CoSTORE <destination>., MAS instruction. Limiting is
performed on the MAC-Unit accumulator. If the contents of the accumulator can be
represented in the destination operand size without overflow, then the data limiter is
disabled and the operand is not modified. If the contents of the accumulator cannot be
represented without overflow in the destination operand size, the limiter will substitute a
“limited” data as explained in Table 4-25:

Table 4-25 Limiter Output

ME-flag MN-flag Output of Limiter
0 X unchanged

1 0 7FFF,

1 1 8000y

Note: In this particular case, both the accumulator and the status register are not
affected. MAS is readable by means of a CoSTORE instruction only.

4.9.7 The Accumulator Shifter

The accumulator shifter is a parallel shifter with a 40-bit input and a 40-bit output. The
source accumulator shifting operations are:

* No shift (Unmodified)
e Up to 16-bit Arithmetic Left Shift
* Up to 16-bit Arithmetic Right Shift

Notice that bits ME, MSV, and MSL in register MSW are affected by left shifts; therefore,
if the saturation mechanism is enabled (MS) the behavior is similar to the one of the
Adder/Subtracter.

Note: Certain precautions are required in case of left shift with saturation enabled.
Generally, if MAE contains significant bits, then the 32-bit value in the accumulator
is to be saturated. However, it is possible that left shift may move some significant
bits out of the accumulator. The 40-bit result will be misinterpreted and will be
either not saturated or saturated incorrectly. There is a chance that the result of
left shift may produce a result which can saturate an original positive number to
the minimum negative value, or vice versa.

User’s Manual 4-68 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

4.9.8 The 40-bit Signed Accumulator Register

The 40-bit accumulator consists of three concatenated registers MAE, MAH, and MAL.
MAE is 8 bits wide, MAH and MAL are 16 bits wide. MAE is the Most Significant Byte of
the 40-bit accumulator. This byte performs a guarding function. MAE is accessed as the
lower byte of register MSW.

When MAH is written, the value in the accumulator is automatically adjusted to signed
extended 40-bit format. That means MAL is cleared and MAE will be automatically
loaded with zeros for a positive number (the most significant bit of MAH is 0), and with
ones for a negative number (the most significant bit of MAH is 1), representing the
extended 40-bit negative number in 2’'s complement notation. One may see that the
extended 40-bit value is equal to the 32-bit value without extension. In other words, after
this extension, MAE does not contain significant bits. Generally, this condition is present
when the highest 9 bits of the 40-bit signed result are the same.

During the accumulator operations, an overflow may happen and the result may not fit
into 32 bits and MAE will change. The extension flag “E” in register MSW is set when the
signed result in the accumulator has exceeded the 32-bit boundary. This condition is
present when the highest 9 bits of the 40-bit signed result are not the same, i.e. MAE
contains significant bits.

Most CoXXX operations specify the 40-bit accumulator register as a source and/or a
destination operand.

.Il\-\n?cl-tllmulator High Word SFR (FE5E,/2F}) Reset Value: 0000,
15|14|13|12|11|10|9|8|7|6|5|4|3|2|1IO
MAH

T rwh
MAL
Accumulator Low Word SFR (FE5C,/2E},) Reset Value: 0000,
15|14|13|12|11|10|9 8|7 6 5 4 3 2 1 0
MAL
rwh
Field Bits Type | Description

MAH, MAL [15:0] |rwh High and Low Part of Accumulator
The 40-bit accumulator is completed by MAE

User’s Manual 4-69 V2.1, 2004-03
CPUSV2_X, V2.2

—

: XC164-16 Derivatives
!nfmegon/ System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

4.9.9 The MAC Unit Status Word MSW

The upper byte of register MSW (bit-addressable) shows the current status of the MAC
Unit. The lower byte of register MSW represents the 8-bit MAC accumulator extension,
building the 40-bit accumulator together with registers MAH and MAL.

MSW
MAC Status Word SFR (FFDE/EF,) Reset Value: 0000,
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
- MV [MSL| ME [MSV| MC | MZ | MN MAE
wh rwh rwh rwh rwh rwh rwh wh
Field Bits Type | Description
Mv 14 rwh Overflow Flag
0 No Overflow produced
1 Overflow produced
MSL 13 rwh Sticky Limit Flag
0 Result was not saturated
1 Result was saturated
ME 12 rwh MAC Extension Flag
0 MAE does not contain significant bits
1 MAE contains significant bits
MSV 11 rwh Sticky Overflow Flag
0 No Overflow occurred
1 Overflow occurred
MC 10 rwh Carry Flag
0 No carry/borrow produced
1 Carry/borrow produced
MZ 9 rwh Zero Flag
0 MAC result is not zero
1 MAC result is zero
MN 8 rwh Negative Result
0 MAC result is positive
1 MAC result is negative
MAE [7:0] rwh MAC Accumulator Extension
The most significant bits of the 40-bit accumulator,
completing registers MAH and MAL

User’'s Manual 4-70 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

MAC Unit Status (MV, MN, MZ, MC, MSV, ME, MSL)

These condition flags indicate the MAC status resulting from the most recently
performed MAC operation. These flags are controlled by the majority of MAC instructions
according to specific rules. Those rules depend on the instruction managing the MAC or
data movement operation.

After execution of an instruction which explicitly updates register MSW, the condition
flags may no longer represent an actual MAC status. An explicit write operation to
register MSW supersedes the condition flag values implicitly generated by the MAC unit.
An explicit read access returns the value of register MSW after execution of the
immediately preceding instruction. Register MSW can be accessed via any instruction
capable of accessing an SFR.

Note: After reset, all MAC status bits are cleared.

MN-Flag: For the majority of the MAC operations, the MN-flag is set to 1 if the most
significant bit of the result contains a 1; otherwise, it is cleared. In the case of integer
operations, the MN-flag can be interpreted as the sign bit of the result (negative: MN = 1,
positive: MN = 0). Negative numbers are always represented as the 2’s complement of
the corresponding positive number. The range of signed numbers extends from
80’0000°0000, to 7F'FFFF’FFFF,.

M2Z-Flag: The MZ-flag is normally set to 1 if the result of a MAC operation equals zero;
otherwise, it is cleared.

MC-Flag: After a MAC addition, the MC-flag indicates that a “Carry” from the most
significant bit of the accumulator extension MAE has been generated. After a MAC
subtraction or a MAC comparison, the MC-flag indicates a “Borrow” representing the
logical negation of a “Carry” for the addition. This means that the MC-flag is setto 1 if no
“Carry” from the most significant bit of the accumulator has been generated during a
subtraction. Subtraction is performed by the MAC Unit as a 2’'s complement addition and
the MC-flag is cleared when this complement addition caused a “Carry”.

For left-shift MAC operations, the MC-flag represents the value of the bit shifted out last.
Right-shift MAC operations always clear the MC-flag. The arithmetic right-shift MAC
operation can set the MC-flag if the enabled round operation generates a “Carry” from
the most significant bit of the accumulator extension MAE.

MSV-Flag: The addition, subtraction, 2’s complement, and round operations always set
the MSV-flag to 1 if the MAC result exceeds the maximum range of 40-bit signed
numbers. If the MSV-flag indicates an arithmetic overflow, the MAC result of an
operation is not valid.

The MSV-flag is a ‘Sticky Bit’. Once set, other MAC operations cannot affect the status
of the MSV-flag. Only a direct write operation can clear the MSV-flag.

ME-Flag: The ME-flag is set if the accumulator extension MAE contains significant bits,
that means if the nine highest accumulator bits are not all equal.

User’'s Manual 4-71 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

MSL-Flag: The MSL-flag is set if an automatic saturation of the accumulator has
happened. The automatic saturation is enabled if bit MS in register MCW is set. The
MSL-Flag can be also set by instructions which limit the contents of the accumulator. If
the accumulator has been limited, the MSL-Flag is set.

The MSL-Flag is a ‘Sticky Bit. Once set, it cannot be affected by the other MAC
operations. Only a direct write operation can clear the MSL-flag.

MV-Flag: The addition, subtraction, and accumulation operations set the MV-flag to 1 if
the result exceeds the maximum range of signed numbers (80°0000°0000, to
7FFFFF'FFFF,); otherwise, the MV-flag is cleared. Note that if the MV-flag indicates an
arithmetic overflow, the result of the integer addition, integer subtraction, or
accumulation is not valid.

4.9.10 The Repeat Counter MRW

The Repeat Counter MRW controls the number of repetitions a loop must be executed.
The register must be pre-loaded before it can be used with -USRx CoXXX operations.
MAC operations are able to decrement this counter. When a -USRx CoXXX instruction
is executed, MRW is checked for zero before being decremented. If MRW equals zero,
bit USRx is set and MRW is not further decremented. Register MRW can be accessed
via any instruction capable of accessing a SFR.

MRW
MAC Repeat Word SFR (FFDA,/ED,) Reset Value: 0000,

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

REPEAT_COUNT

rwh
Field Bits Type | Description
REPEAT_ [15:0] [rwh 16-bit loop counter
COUNT

All CoXXX instructions have a 3-bit wide repeat control field ‘rrr’ (bit positions [31:29]) in
the operand field to control the MRW repeat counter. Table 4-26 lists the possible
encodings.

User’'s Manual 4-72 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

Table 4-26 Encoding of MAC Repeat Word Control

Code in ‘rrr’ Effect on Repeat Counter
0005 regular CoXXX instruction
001g RESERVED
0105 ‘“USRO CoXXX’ instruction,

decrements repeat counter and sets bit USRO if MRW is zero
0115 ‘“USR1 CoXXX’ instruction,

decrements repeat counter and sets bit USR1 if MRW is zero
1XXg RESERVED

Note: Bit USRO has been a general purpose flag also in previous architectures. To
prevent collisions due to using this flag by programmer or compiler, use
“USRO0 COXXX’ instructions very carefully.

The following example shows a loop which is executed 20 times. Every time the
CoMACM instruction is executed, the MRW counter is decremented.

MOV MRW, #19 ;Pre-load loop counter
loop01l:
-USR1 CoMACM [IDX0+], [RO+] ;Calculate and decrement MSW
ADD R2,#0002H

JMPA cc_nusrl, loop0Ol ;Repeat loop until USR1 is set

Note: Because correctly predicted JMPA is executed in 0-cycle, it offers the functionality
of a repeat instruction.

User’'s Manual 4-73 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Central Processing Unit (CPU)

4.10 Constant Registers

All bits of these bit-addressable registers are fixed to 0 or 1 by hardware. These registers
can be read only. Register ZEROS/ONES can be used as a register-addressable
constant of all zeros or all ones, for example for bit manipulation or mask generation. The
constant registers can be accessed via any instruction capable of addressing an SFR.

ZEROS
Zeros Register SFR (FF1C,/8E,)) Reset Value: 0000,

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

r r r r r r r r r r r r r r r r

ONES
Ones Register SFR (FF1E,/8F,) Reset Value: FFFF,,

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

r r r r r r r r r r r r r r r r

User’'s Manual 4-74 V2.1, 2004-03
CPUSV2_X, V2.2

—

Infineon XC1 64-'16 Derivatives
technologics System Units (Vol. 1 of 2)
Interrupt and Trap Functions

5 Interrupt and Trap Functions

The architecture of the XC164 supports several mechanisms for fast and flexible
response to service requests from various sources internal or external to the
microcontroller. Different kinds of exceptions are handled in a similar way:

* Interrupts generated by the Interrupt Controller (ITC)
e DMA transfers issued by the Peripheral Event Controller (PEC)
e Traps caused by the TRAP instruction or issued by faults or specific system states

Normal Interrupt Processing

The CPU temporarily suspends current program execution and branches to an interrupt
service routine to service an interrupt requesting device. The current program status (IP,
PSW, also CSP in segmentation mode) is saved on the internal system stack. A
prioritization scheme with 16 priority levels allows the user to specify the order in which
multiple interrupt requests are to be handled.

Interrupt Processing via the Peripheral Event Controller (PEC)

A faster alternative to normal software controlled interrupt processing is servicing an
interrupt requesting device with the XC164’s integrated Peripheral Event Controller
(PEC). Triggered by an interrupt request, the PEC performs a single word or byte data
transfer between any two locations through one of eight programmable PEC Service
Channels. During a PEC transfer, normal program execution of the CPU is halted. No
internal program status information needs to be saved. The same prioritization scheme
is used for PEC service as for normal interrupt processing.

Trap Functions

Trap functions are activated in response to special conditions that occur during the
execution of instructions. A trap can also be caused externally by the Non-Maskable
Interrupt pin, NMI. Several hardware trap functions are provided to handle erroneous
conditions and exceptions arising during instruction execution. Hardware traps always
have highest priority and cause immediate system reaction. The software trap function
is invoked by the TRAP instruction that generates a software interrupt for a specified
interrupt vector. For all types of traps, the current program status is saved on the system
stack.

External Interrupt Processing

Although the XC164 does not provide dedicated interrupt pins, it allows connection of
external interrupt sources and provides several mechanisms to react to external events
including standard inputs, non-maskable interrupts, and fast external interrupts. Except
for the non-maskable interrupt and the reset input, these interrupt functions are alternate
port functions.

User’s Manual 5-1 V2.1, 2004-03
ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
technologies System Units (Vol. 1 of 2)
Interrupt and Trap Functions

5.1 Interrupt System Structure

The XC164 provides 80 separate interrupt nodes assignable to 16 priority levels, with
8 sub-levels (group priority) on each level. In order to support modular and consistent
software design techniques, most sources of an interrupt or PEC request are supplied
with a separate interrupt control register and an interrupt vector. The control register
contains the interrupt request flag, the interrupt enable bit, and the interrupt priority of the
associated source. Each source request is then activated by one specific event,
determined by the selected operating mode of the respective device. For efficient
resource usage, multi-source interrupt nodes are also incorporated. These nodes can be
activated by several source requests, such as by different kinds of errors in the serial
interfaces. However, specific status flags which identify the type of error are
implemented in the serial channels’ control registers. Additional sharing of interrupt
nodes is supported via interrupt subnode control registers.

The XC164 provides a vectored interrupt system. In this system specific vector locations
in the memory space are reserved for the reset, trap, and interrupt service functions.
Whenever a request occurs, the CPU branches to the location that is associated with the
respective interrupt source. This allows direct identification of the source which caused
the request. The Class B hardware traps all share the same interrupt vector. The status
flags in the Trap Flag Register (TFR) can then be used to determine which exception
caused the trap. For the special software TRAP instruction, the vector address is
specified by the operand field of the instruction, which is a seven bit trap number.

The reserved vector locations build a jump table in the low end of a segment (selected
by register VECSEG) in the XC164’s address space. The jump table consists of the
appropriate jump instructions which transfer control to the interrupt or trap service
routines and which may be located anywhere within the address space. The entries of
the jump table are located at the lowest addresses in the selected code segment. Each
entry occupies 2, 4, 8, or 16 words (selected by bitfield VECSC in register CPUCON1),
providing room for at least one doubleword instruction. The respective vector location
results from multiplying the trap number by the selected step width (2(VECSC+2),

All pending interrupt requests are arbitrated. The arbitration winner is indicated to the
CPU together with its priority level and action request. The CPU triggers the
corresponding action based on the required functionality (normal interrupt, PEC, jump
table cache, etc.) of the arbitration winner.

An action request will be accepted by the CPU if the requesting source has a higher
priority than the current CPU priority level and interrupts are globally enabled. If the
requesting source has a lower (or equal) interrupt level priority than the current CPU
task, it remains pending.

User’s Manual 5-2 V2.1, 2004-03
ICU_X41, V2.1

—

Infi XC164-16 Derivatives
nrineon .
1echno|ogies/ System UnItS (VOI- 1 Of 2)
Interrupt and Trap Functions
| Interrupt and Peripheral Event Controller :
|
| PEC Pointer I
| |
| SRCPO DSTPO PECSEGO |
I SRCP1 DSTP1 PECSEGH I
Interrupt I I
Request I I ‘ ‘ | | | :
Lines : SRCP7 DSTP7 PECSEG7 |
irq0] II |
. | |
irg1
- PEC Request I C166S V2
irg2 | | CPU
| . |
ira3 Arbitr. . Request Request Iniection
Tyl Arbitration | Winner | Peripheral | control Control Cjontrol I —
| > Event < > < > I<::> Injection
E I Cc(>StErc();I;er Interrupt (CPU Action : Interface
irq n-3 I EOP Interrupt Handler [Interrupt Request) I
—/—l) INT?2 Request Request
. irg n-1j«¢ g » |
irgn-2" I
B |
| |
S i i T
Arbitration PEC Interrupt
| OCE/OCDS
I Control Control rHincﬂer_CciltEII OCE Injection I
I (Interrupt Control (PEC Control | FastBank I Request & Control |
I Registers) Registers) | Switching | |
: 1] BNKSELO] :
' : [
I irqoIC PECCO | [BNKsELs : |
| irg11C PECC1 _—— = — — — |
MW 1t ym=—— |
1! | \ Ir Interrupt Jump I |
Table Cache I
I irq1261C PECC7 I I
| 1| FINTOCSP || |
EOPIC PECISNC I
| 1| FINTOADDR |1
: : FINT1CSP : :
I I FINT1ADDR I |
- -—-—1 |
" Number of interrupt nodes n (up to 128)
2 End of PEC Interrupt (EOPINT) is connected to Interrupt request line irq n-1.
Therefore, only n-1 interrupt lines (irqg n-2 ... 0) are available for peripheral request handling.
MCB04915
Figure 5-1 Block Diagram of the Interrupt and PEC Controller
User’s Manual 5-3 V2.1, 2004-03

ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
technologies System Units (Vol. 1 of 2)
Interrupt and Trap Functions

5.2 Interrupt Arbitration and Control

The XC164’s interrupt arbitration system handles interrupt requests from up to
80 sources. Interrupt requests may be triggered either by the on-chip peripherals or by
external inputs.

Interrupt processing is controlled globally by register PSW through a general interrupt
enable bit (IEN) and the CPU priority field (ILVL). Additionally, the different interrupt
sources are controlled individually by their specific interrupt control registers (... IC).
Thus, the acceptance of requests by the CPU is determined by both the individual
interrupt control registers and by the PSW. PEC services are controlled by the respective
PECCx register and by the source and destination pointers which specify the task of the
respective PEC service channel.

An interrupt request sets the associated interrupt request flag xxIR. If the requesting
interrupt node is enabled by the associated interrupt enable bit xxIE arbitration starts with
the next clock cycle, or after completion of an arbitration cycle that is already in progress.
All interrupt requests pending at the beginning of a new arbitration cycle are considered,
independently from when they were actually requested.

Figure 5-2 shows the three-stage interrupt prioritization scheme:

Compared 4-Bit ILVL+
2/3-Bit XGLVL

priority levels of
interrupt sources
(64/128 priority levels)

4-Bit IRQ/PEC priority level
comparated with
5-Bit OCDS priority level

5-Bit request priority level
comparated with
4-Bit PSW priority level

| OCDS | Hardware
I break | Traps >
: request | >
[»
'l ocDps XXXXX \
| or (OCDS |
: OCE service }
request
' priority | CPU
Interrupt : ove) }XXXXX
Requegt ' | (request
Lines : OXXXX CPU } Ipnolnty
—> XXXX | (ILchd 4| Action | evel) ArbCiteregion
Y S(II;(\)CL)+ | \?v)i(tr? e Control [| OXXXX
Request |1y ' PEC/ |0in MSB) | (ILVL.PSW
S
Lines FXGLVL)| Interrupt } extended
¥ Arbitration : Handler) gl'thMSB)
in
' | \
> | \
| \
| \ PSW
| \
Stage 1: : Stage 2: } Stage 3:
| \
| \
| \
| |
| |

MCDO04913

Figure 5-2 Interrupt Arbitration

User’s Manual 5-4 V2.1, 2004-03
ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Interrupt and Trap Functions

The interrupt prioritization is done in three stages:

* Select one of the active interrupt requests
e Compare the priority levels of the selected request and an OCDS service request
e Compare the priority level of the final request with the CPU priority level

The First Arbitration Stage

compares the priority levels of the active interrupt request lines. The interrupt priority
level of each requestor is defined by bitfield ILVL in the respective xxIC register. The
extended group priority level XGLVL (combined from bitfields GPX and GLVL) defines
up to eight sub-priorities within one interrupt level. The group priority level distinguishes
interrupt requests assigned to the same priority level, so one winner can be determined.

Note: All interrupt request sources that are enabled and programmed to the same
interrupt priority level (ILVL) must have different group priority levels. Otherwise,
an incorrect interrupt vector will be generated.

The Second Arbitration Stage

compares the priority of the first stage winner with the priority of OCDS service requests.
OCDS service requests bypass the first stage of arbitration and go directly to the CPU
Action Control Unit. The CPU Action Control Unit compares the winner’s 4-bit priority
level (disregarding the group level) with the 5-bit OCDS service request priority. The 4-bit
ILVL of the interrupt request is extended to a 5-bit value with MSB = 0. This means that
any OCDS request with MSB = 1 will always win the second stage arbitration. However,
if there is a conflict between an OCDS request and an interrupt request, the interrupt
request wins.

The Third Arbitration Stage

compares the priority level of the second stage winner with the priority of the current CPU
task. An action request will be accepted by the CPU only if the priority level of the request
is higher than the current CPU priority level (bitfield ILVL in register PSW) and if interrupt
and PEC requests are globally enabled by the global interrupt enable flag IEN in register
PSW. To compare with the 5-bit priority level of the second stage winner, the 4-bit CPU
priority level is extended to a 5-bit value with MSB = 0. This means that any request with
MSB = 1 will always interrupt the current CPU task. If the requestor has a priority level
lower than or equal to the current CPU task, the request remains pending.

Note: Priority level 00005 is the default level of the CPU. Therefore, a request on
interrupt priority level 00005 will be arbitrated, but the CPU will never accept an
action request on this level. However, every individually enabled interrupt request
(including all denied interrupt requests and priority level 00005 requests) triggers
a CPU wake-up from idle state independent of the global interrupt enable bit IEN.

User’s Manual 5-5 V2.1, 2004-03
ICU_X41, V2.1

—

: XC164-16 Derivatives
!nfmegon/ System Units (Vol. 1 of 2)

Interrupt and Trap Functions

Both the OCDS break requests and the hardware traps bypass the arbitration scheme
and go directly to the core (see also Figure 5-2).

The arbitration process starts with an enabled interrupt request and stays active as long
as an interrupt request is pending. If no interrupt request is pending the arbitration is
stopped to save power.

Interrupt Control Registers

The control functions for each interrupt node are grouped in a dedicated interrupt control
register (xxIC, where “xx” stands for a mnemonic for the respective node). All interrupt
control registers are organized identically. The lower 9 bits of an interrupt control register
contain the complete interrupt control and status information of the associated source
required during one round of prioritization (arbitration cycle); the upper 7 bits are
reserved for future use. All interrupt control registers are bit-addressable and all bits can
be read or written via software. Therefore, each interrupt source can be programmed or
modified with just one instruction.

xxIC
Interrupt Control Register (E)SFR (yyyyy/zz,) Reset Value: - 000,
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
- - - - - - - |GPX | xxIR | xxIE ILVL GLVL
- - rw | rwh rw I r\I/v I r\IN
Field Bits Type |Description
GPX 8 rw Group Priority Extension
Completes bitfield GLVL to the 3-bit group level
xxIR" 7 rwh Interrupt Request Flag
0 No request pending
1 This source has raised an interrupt request
xxIE 6 rw Interrupt Enable Control Bit
(individually enables/disables a specific source)
0 Interrupt request is disabled
1 Interrupt request is enabled
ILVL [5:2] rw Interrupt Priority Level
Fy Highest priority level
Oy Lowest priority level

User’s Manual 5-6 V2.1, 2004-03
ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
technologies System Units (Vol. 1 of 2)
Interrupt and Trap Functions
Field Bits Type |Description
GLVL [1:0] rw Group Priority Level

(Is completed by bit GPX to the 3-bit group level)
3y Highest priority level

Oy Lowest priority level

1) Bit xxIR supports bit-protection.

When accessing interrupt control registers through instructions which operate on word
data types, their upper 7 bits (15 ... 9) will return zeros when read, and will discard written
data. It is recommended to always write zeros to these bit positions. The layout of the
interrupt control registers shown below applies to each xxIC register, where “xx”
represents the mnemonic for the respective source.

The Interrupt Request Flag is set by hardware whenever a service request from its
respective source occurs. It is cleared automatically upon entry into the interrupt service
routine or upon a PEC service. In the case of PEC service, the Interrupt Request flag
remains set if the COUNT field in register PECCx of the selected PEC channel
decrements to zero and bit EOPINT is cleared. This allows a normal CPU interrupt to
respond to a completed PEC block transfer on the same priority level.

Note: Modifying the Interrupt Request flag via software causes the same effects as if it
had been set or cleared by hardware.

The Interrupt Enable Control Bit determines whether the respective interrupt node
takes part in the arbitration process (enabled) or not (disabled). The associated request
flag will be set upon a source request in any case. The occurrence of an interrupt request
can so be polled via xxIR even while the node is disabled.

Note: In this case the interrupt request flag xxIR is not cleared automatically but must be
cleared via software.

Interrupt Priority Level and Group Level

The four bits of bitfield ILVL specify the priority level of a service request for the
arbitration of simultaneous requests. The priority increases with the numerical value of
ILVL: so, 00005 is the lowest and 1111 is the highest priority level.

When more than one interrupt request on a specific level becomes active at the same
time, the values in the respective bitfields GPX and GLVL are used for second level
arbitration to select one request to be serviced. Again, the group priority increases with
the numerical value of the concatenation of bitfields GPX and GLVL, so 0005 is the
lowest and 1115 is the highest group priority.

Note: All interrupt request sources enabled and programmed to the same priority level
must always be programmed to different group priorities. Otherwise, an incorrect
interrupt vector will be generated.

User’s Manual 5-7 V2.1, 2004-03
ICU_X41, V2.1

—

: XC164-16 Derivatives
!nfmegon/ System Units (Vol. 1 of 2)

Interrupt and Trap Functions

Upon entry into the interrupt service routine, the priority level of the source that won the
arbitration and whose priority level is higher than the current CPU level, is copied into
bitfield ILVL of register PSW after pushing the old PSW contents onto the stack.

The interrupt system of the XC164 allows nesting of up to 15 interrupt service routines
of different priority levels (level 0 cannot be arbitrated).

Interrupt requests programmed to priority levels 15 ... 8 (i.e., ILVL = 1XXXg) can be
serviced by the PEC if the associated PEC channel is properly assigned and enabled
(please refer to Section 5.4). Interrupt requests programmed to priority levels 7 through
1 will always be serviced by normal interrupt processing.

Note: Priority level 00005 is the default level of the CPU. Therefore, a request on level 0
will never be serviced because it can never interrupt the CPU. However, an
individually enabled interrupt request (independent of bit IEN) on level 00005 will
terminate the XC164’s Idle mode and reactivate the CPU.

General Interrupt Control Functions in Register PSW

The acceptance of an interrupt request depends on the current CPU priority level (bitfield
ILVL in register PSW) and the global interrupt enable control bit IEN in register PSW (see
Section 4.8).

CPU Priority ILVL defines the current level for the operation of the CPU. This bitfield
reflects the priority level of the routine currently executed. Upon entry into an interrupt
service routine, this bitfield is updated with the priority level of the request being serviced.
The PSW is saved on the system stack before the request is serviced. The CPU level
determines the minimum interrupt priority level which will be serviced. Any request on
the same or a lower level will not be acknowledged. The current CPU priority level may
be adjusted via software to control which interrupt request sources will be
acknowledged. PEC transfers do not really interrupt the CPU, but rather “steal” a single
cycle, so PEC services do not influence the ILVL field in the PSW.

Hardware traps switch the CPU level to maximum priority (i.e. 15) so no interrupt or PEC
requests will be acknowledged while an exception trap service routine is executed.

Note: The TRAP instruction does not change the CPU level, so software invoked trap
service routines may be interrupted by higher requests.

Interrupt Enable bit IEN globally enables or disables PEC operation and the
acceptance of interrupts by the CPU. When IEN is cleared, no new interrupt requests are
accepted by the CPU (see also Section 4.3.4). When IEN is set to 1, all interrupt
sources, which have been individually enabled by the interrupt enable bits in their
associated control registers, are globally enabled. Traps are non-maskable and are,
therefore, not affected by the IEN bit.

Note: To generate requests, interrupt sources must be also enabled by the interrupt
enable bits in their associated control register.

User’s Manual 5-8 V2.1, 2004-03
ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Interrupt and Trap Functions

Register Bank Select bitfield BANK defines the currently used register bank for the
CPU operation. When the CPU enters an interrupt service routine, this bitfield is updated
to select the register bank associated with the serviced request:

* Requests on priority levels 15 ... 12 use the register bank pre-selected via the
respective bitfield GPRSELXx in the corresponding BNKSEL register

* Requests on priority levels 11 ... 1 always use the global register bank,
i.e. BANK = 00g

* Hardware traps always use the global register bank, i.e. BANK = 005

* The TRAP instruction does not change the current register bank

User’s Manual 5-9 V2.1, 2004-03
ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
technologies System Units (Vol. 1 of 2)
Interrupt and Trap Functions

5.3 Interrupt Vector Table

The XC164 provides a vectored interrupt system. This system reserves a set of specific
memory locations, which are accessed automatically upon the respective trigger event.
Entries for the following events are provided:

* Reset (hardware, software, watchdog)
* Traps (hardware-generated by fault conditions or via TRAP instruction)
* Interrupt service requests

Whenever a request is accepted, the CPU branches to the location associated with the
respective trigger source. This vector position directly identifies the source causing the
request, with two exceptions:

e Class B hardware traps all share the same interrupt vector. The status flags in the
Trap Flag Register (TFR) are used to determine which exception caused the trap. For
details, see Section 5.11.

* Aninterrupt node may be shared by several interrupt requests, e.g. within a module.
Additional flags identify the requesting source, so the software can handle each
request individually. For details, see Section 5.7.

The reserved vector locations build a vector table located in the address space of the
XC164. The vector table usually contains the appropriate jump instructions that transfer
control to the interrupt or trap service routines. These routines may be located anywhere
within the address space. The location and organization of the vector table is
programmable.

The Vector Segment register VECSEG defines the segment of the Vector Table (can be
located in all segments, except for reserved areas).

Bitfield VECSC in register CPUCONT1 defines the space between two adjacent vectors
(can be 2, 4, 8, or 16 words). For a summary of register CPUCONT1, please refer to
Section 4.4.

Each vector location has an offset address to the segment base address of the vector
table (given by VECSEG). The offset can be easily calculated by multiplying the vector
number with the vector space programmed in bitfield VECSC.

Table 5-2 lists all sources capable of requesting interrupt or PEC service in the XC164,
the associated interrupt vector locations, the associated vector numbers, and the
associated interrupt control registers.

Note: All interrupt nodes which are currently not used by their associated modules or are
not connected to a module in the actual derivative may be used to generate
software controlled interrupt requests by setting the respective IR flag.

User’s Manual 5-10 V2.1, 2004-03
ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Interrupt and Trap Functions

VECSEG
Vector Segment Pointer SFR (FF12,/89,) Reset Value: Table 5-1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - vecseg
rwh

Field Bits Type |Description

vecseg [7:0] rwh Segment number of the Vector Table

The reset value of register VECSEG, that means the initial location of the vector table,
depends on the reset configuration. Table 5-1 lists the possible locations. This is
required because the vector table also provides the reset vector.

Table 5-1 Reset Values for Register VECSEG

Initial Value Reset Configuration

0000, Standard start from external memory

0041, Alternate start from external memory

00CO,, Standard start from Internal Program Memory

00C1, Alternate start from Internal Program Memory

00EO0, Execute bootstrap loader code

User’s Manual 5-11 V2.1, 2004-03

ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
lechnologies System Units (Vol. 1 of 2)
Interrupt and Trap Functions

Table 5-2 XC164 Interrupt Nodes
Source of Interrupt or PEC Control Vector Vector
Service Request Register Location” Number
CAPCOM Register 0 CC1_CCoIC xx’0040, 104/ 16
CAPCOM Register 1 CC1_CcC1IC xx’0044,, 11y/17,
CAPCOM Register 2 CCi_cc2aIC xx’0048,, 12,/ 18,
CAPCOM Register 3 CC1_CCs3IC xx’004C 13,/ 19,
CAPCOM Register 4 CC1_CC4IC xx'0050y 14,/ 20,
CAPCOM Register 5 CC1_CC5IC xx’0054, 15, /21,
CAPCOM Register 6 CC1_CcCsIC xx’0058, 16y /22,
CAPCOM Register 7 CC1_CC7IC xx’005C 17, /23,
CAPCOM Register 8 CC1_CcCs8IC xx’0060y 18y / 24
CAPCOM Register 9 CC1_CCoIC xx’ 0064, 19,/ 25,
CAPCOM Register 10 CC1_CC10IC | xx'0068 1A,/ 26
CAPCOM Register 11 CC1_CC11IC | xx006Cy 1By /27
CAPCOM Register 12 CC1_CC12IC | xx0070 1C, /28,
CAPCOM Register 13 CC1_CC13IC | xx'0074 1Dy / 29,
CAPCOM Register 14 CC1_CC14IC | xx’0078 1E,/30p
CAPCOM Register 15 CC1_CC15IC | xx'007C 1F, /31
CAPCOM Register 16 CC2_CC16IC | xx’00CO0, 30, /48,
CAPCOM Register 17 CC2_CC17IC | xx'00C4, 31,/49,
CAPCOM Register 18 CC2_CC18IC | xx'00C8, 32,,/50p
CAPCOM Register 19 CC2_CC19IC | xx'00CCy 33,/51,
CAPCOM Register 20 CC2_CC20IC | xx00D0y 34, /52,
CAPCOM Register 21 CC2_CC21IC | xx’00D4,, 35, /53
CAPCOM Register 22 CC2_CC22IC | xx'00D8,, 36y / 54,
CAPCOM Register 23 CC2_CC23IC | xx'00DCy 37, /55,
CAPCOM Register 24 CC2_CC24IC | xx’00EOy, 38y / 56
CAPCOM Register 25 CC2_CC25IC | xx’'00E4 39,/57,
CAPCOM Register 26 CC2_CC26IC | xx’00E8,, 3A, /58,
CAPCOM Register 27 CC2_CC27IC | xx’'00EC 3By /59,
CAPCOM Register 28 CC2_CC28IC | xx’00EOQ 3C, / 60p
CAPCOM Register 29 CC2_CC29IC | xx’0110y 44,,/ 68,
User’s Manual 5-12 V2.1, 2004-03

ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
lechnologies System Units (Vol. 1 of 2)
Interrupt and Trap Functions

Table 5-2 XC164 Interrupt Nodes (cont’d)
Source of Interrupt or PEC Control Vector Vector
Service Request Register Location” Number
CAPCOM Register 30 CC2_CC30IC | xx'0114 45, /69,
CAPCOM Register 31 CC2_CC31IC | xx'0118 46y / 70,
CAPCOM Timer 0 CC1_ToIC xx’0080y, 20,/ 32,
CAPCOM Timer 1 CC1_T1IC xx’0084 21,/ 33
CAPCOM Timer 7 CC2_T7IC xx’00F4,, 3D, /61
CAPCOM Timer 8 CC2_T8IC xx’00F8 3E, /62,
GPT1 Timer 2 GPT12E_T2IC |xx’0088 22,/ 34,
GPT1 Timer 3 GPT12E_T3IC |xx’008C 23,/ 35
GPT1 Timer 4 GPT12E_T4IC |xx’0090, 24,/ 36,
GPT2 Timer 5 GPT12E_T5IC | xx’0094,, 25,/ 37,
GPT2 Timer 6 GPT12E_T6IC | xx'0098 26, / 38
GPT2 CAPREL Reg. GPT12E_CRIC |xx’009C 27,139y
A/D Conversion Compl. ADC_CIC xx’00A0y 28,/ 40,
A/D Overrun Error ADC_EIC xx’'00A4, 29,/ 41,
ASCO Transmit ASCO_TIC xx’00A8,, 2A, /42,
ASCO Transmit Buffer ASCO_TBIC xx’011Cy 47,1 71p
ASCO Receive ASCO_RIC xxX’'00ACy 2By /43,
ASCO Error ASCO_EIC xx’00B0y 2C, / 44,
ASCO Autobaud ASCO_ABIC xx'017Cy 5F, /95,
SSCO Transmit SSCO_TIC xx’00B4, 2D, / 45,
SSCO Receive SSCO_RIC xx’00B8 2E, / 46,
SSCO Error SSCO_EIC xx’00BCy 2Fy /47,
PLL/OWD PLL_IC xx’010C 43,/ 67,
ASC1 Transmit ASC1_TIC xx’0120y 48,/ 72,
ASC1 Transmit Buffer ASC1_TBIC xx'0178,, 5E, /94,
ASC1 Receive ASC1_RIC xx'0124, 49,/ 73p
ASC1 Error ASC1_EIC xx'0128,, 4A, 1 74,
ASC1 Autobaud ASC1_ABIC xx’0108 42,/ 66,
End of PEC Subchannel EOPIC xx’0130y 4C, / 76p
CAPCOMS6 Timer T12 CCU6_T12IC |xx'0134, 4D,/ 77,
User's Manual 5-13 V2.1, 2004-03

ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
lechnologies System Units (Vol. 1 of 2)
Interrupt and Trap Functions

Table 5-2 XC164 Interrupt Nodes (cont’d)
Source of Interrupt or PEC Control Vector Vector
Service Request Register Location” Number
CAPCOM®6 Timer T13 CCU6_T13IC | xx'0138 4E, /78,
CAPCOM®6 Emergency CCUG6_EIC xx’013C 4F, / 79p
CAPCOM®6 CCU6_IC xx’0140,, 50,/ 80p
SSC1 Transmit SSC1_TIC xx'0144, 51,/81,
SSC1 Receive SSC1_RIC xx’0148, 52,,/ 82y
SSC1 Error SSC1_EIC xx'014C 53, /83,
CANO CAN_OIC xx’0150y 54,/ 84,
CANT CAN_1IC xx'0154,, 55, /85,
CAN2 CAN_2IC xx’0158, 56 / 86,
CANS3 CAN_SIC xx’015C 57,187,
CAN4 CAN_4IC xx'0164 59,/89,
CAN5 CAN_S5IC xx'0168, 5A, /90,
CANG CAN_6IC xx’016C 5By /91,
CAN7 CAN_7IC xx'0170y 5C /92,
RTC RTC_IC xx'0174,, 5D, /93,
Unassigned node xx’'00FC,, 3F, /63y
Unassigned node xx’0100y 40,/ 64p
Unassigned node xx'0104, 41,/ 65,
Unassigned node xx'012C, 4By / 75,
Unassigned node xx’0160, 58, /88,

1) Register VECSEG defines the segment where the vector table is located to.
Bitfield VECSC in register CPUCON1 defines the distance between two adjacent vectors. This table
represents the default setting, with a distance of 4 (two words) between two vectors.

User’s Manual 5-14
ICU_X41, V2.1

V2.1, 2004-03

—

Infineon
ec no Ogles/

XC164-16 Derivatives
System Units (Vol. 1 of 2)

Interrupt and Trap Functions

Table 5-3 lists the vector locations for hardware traps and the corresponding status flags
in register TFR. It also lists the priorities of trap service for those cases in which more
than one trap condition might be detected within the same instruction. After any reset
(hardware reset, software reset instruction SRST, or reset by watchdog timer overflow)
program execution starts at the reset vector at location xx’0000,,. Reset conditions have
priority over every other system activity and, therefore, have the highest priority (trap
priority 1l1).

Software traps may be initiated to any defined vector location. A service routine entered
via a software TRAP instruction is always executed on the current CPU priority level
which is indicated in bitfield ILVL in register PSW. This means that routines entered via
the software TRAP instruction can be interrupted by all hardware traps or higher level
interrupt requests.

Table 5-3 Hardware Trap Summary

Exception Condition Trap Flag | Trap Vector | Vector Vector |Trap
Location” | Number | Priority
Reset Functions: —
¢ Hardware Reset RESET xx’0000, |00 1l
* Software Reset RESET xx’0000,; |00y 1l
e W-dog Timer Overflow RESET xx’'0000, |00, I
Class A Hardware Traps:
* Non-Maskable Interrupt | NMI NMITRAP | xx’0008,, |02, Il
» Stack Overflow STKOF STOTRAP |xx'0010, |04, Il
» Stack Underflow STKUF STUTRAP | xx'0018, |06, Il
» Software Break SOFTBRK | SBRKTRAP | xx’'0020, |08y Il
Class B Hardware Traps:
* Undefined Opcode UNDOPC |BTRAP xx’0028,;, |O0A, I
* PMI Access Error PACER BTRAP xx'0028, |O0A, I
* Protected Instruction PRTFLT |BTRAP xx’0028, |O0A, I
Fault
* lllegal Word Operand ILLOPA BTRAP xx’0028, |O0A, I
Access
Reserved - — [2C - 0By - |-
3Cyl OF]
Software Traps —~ —~ Any" Any Current
e TRAP Instruction [00y - CPU
7F4] Priority

1) Register VECSEG defines the segment where the vector table is located to.
Bitfield VECSC in register CPUCON1 defines the distance between two adjacent vectors. This table
represents the default setting, with a distance of 4 (two words) between two vectors.

User’s Manual 5-15

ICU_X41, V2.1

V2.1, 2004-03

—

: XC164-16 Derivatives
!nfmegon/ System Units (Vol. 1 of 2)

Interrupt and Trap Functions

Interrupt Jump Table Cache

Servicing an interrupt request via the vector table usually incurs two subsequent
branches: an implicit branch to the vector location and an explicit branch to the actual
service routine. The interrupt servicing time can be reduced by the Interrupt Jump Table
Cache (ITC, also called “fast interrupt”). This feature eliminates the second explicit
branch by directly providing the CPU with the service routine’s location.

The ITC provides two 24-bit pointers, so the CPU can directly branch to the respective
service routines. These fast interrupts can be selected for two interrupt sources on
priority levels 15 ... 12.

The two pointers are each stored in a pair of interrupt jump table cache registers
(FINTXADDR, FINTxCSP), which store a pointer's segment and offset along with the
priority level it shall be assigned to (select the same priority that is programmed for the
respective interrupt node).

FINTOADDR
Fast Interrupt Address Reg. 0 XSFR (EC02,/--) Reset Value: 0000,
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADDR 0
| rw | r
FINT1ADDR
Fast Interrupt Address Reg.1 XSFR (EC06,/--) Reset Value: 0000,
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADDR 0
| | | | | | | rW | | | | | | | r
Field Bits Type | Description
ADDR [15:1] |[rw Address of Interrupt Service Routine

Specifies address bits 15 ... 1 of the 24-bit pointer to
the interrupt service routine. This word offset is
concatenated with FINTXxCSP.SEG.

User’s Manual 5-16 V2.1, 2004-03
ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
lechnologies System Units (Vol. 1 of 2)
Interrupt and Trap Functions
FINTOCSP
Fast Interrupt Control Reg. 0 XSFR (EC00,/--) Reset Value: 0000,
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EN - - |GPX ILVL GLVL SEG
rw - - rw r\IN r\IN | | | I’\IN | | |
FINT1CSP
Fast Interrupt Control Reg. 1 XSFR (EC04,/--) Reset Value: 0000,
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EN - - |GPX ILVL GLVL SEG
rw - - rw r\IN r\IN I’\IN
Field Bits Type | Description
EN 15 rw Fast Interrupt Enable
0 The interrupt jump table cache is not used
1 The interrupt jump table cache is enabled,

the vector table entry for the specified request
is bypassed, the cache pointer is used

GPX 12 rw Group Priority Extension
Used together with bitfield GLVL
ILVL [11:10] | rw Interrupt Priority Level

This selects the interrupt priority (15 ... 12) of the
request this pointer shall be assigned to

00 Interrupt priority level 12 (1100g)

01 Interrupt priority level 13 (1101g)

10 Interrupt priority level 14 (1110g)

11 Interrupt priority level 15 (11115)

GLVL [9:8] rw Group Priority Level
Together with bit GPX this selects the group priority
of the request this pointer shall be assigned to

SEG [7:0] rw Segment Number of Interrupt Service Routine
Specifies address bits 23 ... 16 of the 24-bit pointer
to the interrupt service routine, is concatenated with
FINTXADDR

User’s Manual 5-17 V2.1, 2004-03
ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Interrupt and Trap Functions

54 Operation of the Peripheral Event Controller Channels

The XC164’s Peripheral Event Controller (PEC) provides 8 PEC service channels which
move a single byte or word between any two locations. A PEC transfer can be triggered
by an interrupt service request and is the fastest possible interrupt response. In many
cases a PEC transfer is sufficient to service the respective peripheral request (for
example, serial channels, etc.).

PEC transfers do not change the current context, but rather “steal” cycles from the CPU,
so the current program status and context needs not to be saved and restored as with
standard interrupts.

The PEC channels are controlled by a dedicated set of registers which are assigned to
dedicated PEC resources:

A 24-bit source pointer for each channel

A 24-bit destination pointer for each channel

A Channel Counter/Control register (PECCx) for each channel, selecting the
operating mode for the respective channel

Two interrupt control registers to control the operation of block transfers

The PECC registers control the action performed by the respective PEC channel.

Transfer Size (bit BWT) controls whether a byte or a word is moved during a PEC
service cycle. This selection controls the transferred data size and the increment step for
the pointer(s) to be modified.

Pointer Modification (bitfield INC) controls, which of the PEC pointers is incremented
after the PEC transfer. If the pointers are not modified (INC = 00g), the respective
channel will always move data from the same source to the same destination.

Transfer Control (bitfield COUNT) controls if the respective PEC channel remains
active after the transfer or not. Bitfield COUNT also generally enables a PEC channel
(COUNT > 00y).

The PECC registers also select the assignment of PEC channels to interrupt priority
levels (bitfield PLEV) and the interrupt behavior after PEC transfer completion (bit
EOPINT).

Note: All interrupt request sources that are enabled and programmed for PEC service
should use different channels. Otherwise, only one transfer will be performed for
all simultaneous requests. When COUNT is decremented to 00, and the CPU is
to be interrupted, an incorrect interrupt vector will be generated.

PEC transfers are executed only if their priority level is higher than the CPU level.

User’s Manual 5-18 V2.1, 2004-03
ICU_X41, V2.1

—

Infine on XC1 64-'1 6 Derivatives
technologies System Units (Vol. 1 of 2)
Interrupt and Trap Functions

PECCx

PEC Control Reg.

15 14

13

12

SFR (FECy, /62, Table 5-4)

11

10

Reset Value: 0000,

9 8 7 6 5 4 3 2 1 0

EOP
INT

CL

BWT

rw

rw

rw

Field

Type

Description

EOPINT

rw

End of PEC Interrupt Selection
0 End of PEC interrupt on the same (PEC) level
1 End of PEC interrupt via separate node EOPIC

PLEV

[13:12]

r'w

PEC Level Selection
This bitfield controls the PEC channel assignment to
an arbitration priority level (see section below)

CL

11

rw

Channel Link Control
0 PEC channels work independently
1 Pairs of PEC channels are linked together?

INC

[10:9]

r'w

Increment Control (Pointer Modification)?

00 Pointers are not modified

01 Increment DSTPx by 1 or2 (BWT =1 or 0)
10 Increment SRCPx by 1 or 2 (BWT =1 or 0)
11 Increment both DSTPx and SRCPx by 1 or 2

BWT

r'w

Byte/Word Transfer Selection
0 Transfer a word
1 Transfer a byte

COUNT

[7:0]

rwh

PEC Transfer Count
Counts PEC transfers and influences the channel’s
action (see Section 5.4.2)

1) For a functional description see “Channel Link Mode for Data Chaining”.

2) Pointers are incremented/decremented only within the current segment.

Table 5-4 PEC Control Register Addresses

Register Address Reg. Space | Register Address Reg. Space
PECCO FECO, /60, | SFR PECC4 FEC8, /64, | SFR

PECCH1 FEC2,/61, | SFR PECC5 FECA, /65, | SFR

PECC2 FEC4, /62, | SFR PECC6 FECC,, / 66, | SFR

PECC3 FEC6, /63, | SFR PECC7 FECE, /67, | SFR

User's Manual 5-19 V2.1, 2004-03

ICU_X41, V2.1

—

: XC164-16 Derivatives
!ntmegon/ System Units (Vol. 1 of 2)

Interrupt and Trap Functions

The PEC channel number is derived from the respective ILVL (LSB) and GLVL, where
the priority band (ILVL) is selected by the channel’s bitfield PLEV (see Table 5-5). So,
programming a source to priority level 15 (ILVL = 11113) selects the PEC channel group
7 ... 4 with PLEV = 00g; programming a source to priority level 14 (ILVL = 1110g) selects
the PEC channel group 3 ... 0 with PLEV = 00g; programming a source to priority level
10 (ILVL = 1010g) selects the PEC channel group 3 ... 0 with PLEV = 10g. The actual
PEC channel number is then determined by the group priority (levels 3...0, i.e.
GPX =0).

Simultaneous requests for PEC channels are prioritized according to the PEC channel
number, where channel 0 has lowest and channel 7 has highest priority.

Note: All sources requesting PEC service must be programmed to different PEC
channels. Otherwise, an incorrect PEC channel may be activated.

Table 5-5 PEC Channel Assignment

Selected Group Used Interrupt Priorities Depending on Bitfield PLEV
PEC Channel |Level [p)Fy =00, |PLEV =01, |PLEV =10, |PLEV =11,
7 3 15 13 11 9

6 2

5 1

4 0

3 3 14 12 10 8

2 2

1 1

0 0

Table 5-6 shows in a few examples which action is executed with a given programming
of an interrupt control register and a PEC channel.

User’s Manual 5-20 V2.1, 2004-03
ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
lechnologies System Units (Vol. 1 of 2)
Interrupt and Trap Functions
Table 5-6 Interrupt Priority Examples
Priority Level Type of Service
Interr. | Group | COUNT = 00, COUNT = 00, COUNT = 00,
Level |Level |PLEV =XXg PLEV = 004 PLEV =014
1111111 CPU interrupt, CPU interrupt, CPU interrupt,
level 15, group prio 7 |level 15, group prio 7 |level 15, group prio 7
1111|011 CPU interrupt, PEC service, CPU interrupt,
level 15, group prio 3 |channel 7 level 15, group prio 3
1111010 |CPU interrupt, PEC service, CPU interrupt,
level 15, group prio 2 |channel 6 level 15, group prio 2
1110{010 |CPU interrupt, PEC service, CPU interrupt,
level 14, group prio 2 |channel 2 level 14, group prio 2
1101|110 |CPU interrupt, CPU interrupt, CPU interrupt,
level 13, group prio 6 |level 13, group prio 6 |level 13, group prio 6
1101{010 |CPU interrupt, CPU interrupt, PEC service,
level 13, group prio 2 |level 13, group prio 2 | channel 6
0001|011 CPU interrupt, CPU interrupt, CPU interrupt,
level 1, group prio 3 |level 1, group prio 3 |level 1, group prio 3
0001|000 |CPU interrupt, CPU interrupt, CPU interrupt,
level 1, group prio 0 |level 1, group prio 0 |level 1, group prio O
0000 |X XX |No servicel! No service! No service!

Note: PEC service is only achieved when bit GPX = 0 and COUNT # 0.
Requests on levels 7 ... 1 cannot initiate PEC transfers. They are always serviced
by an interrupt service routine: no PECC register is associated and no COUNT
field is checked.

User’s Manual
ICU_X41, V2.1

5-21

V2.1, 2004-03

—

: XC164-16 Derivatives
!ntmegon/ System Units (Vol. 1 of 2)

Interrupt and Trap Functions

5.41 The PEC Source and Destination Pointers

The PEC channels’ source and destination pointers specify the locations between which
the data is to be moved. Both 24-bit pointers are built by concatenating the 16-bit offset
register (SRCPx or DSTPx) with the respective 8-bit segment bitfield (SRCSEGx or
DSTSEGx, combined in register PECSEGX).

PECSEGx

SRCSEGx | DSTSEGx

15 ‘ ‘ 87 0
SRCPx DSTPx
SREPX DS_II—PX
15 ! 0 15 ! 0
| | | |
Source Pointer Destination Pointer
23 16I15 ! 0 23 16I15 ! 0
Segment Address Segment Offset Segment Address Segment Offset

Data Transfer
[

MCD04916

x =7 ... 0, depending on PEC channel number

Figure 5-3 PEC Data Pointers

When a PEC pointer is automatically incremented after a transfer, only the offset part is
incremented (SRCPx and/or DSTPXx), while the respective segment part is not modified
by hardware. Thus, a pointer may be incremented within the current segment, but may
not cross the segment boundary. When a PEC pointer reaches the maximum offset
(FFFE, for word transfers, FFFF,, for byte transfers), it is not incremented further, but
keeps its maximum offset value. This protects memory in adjacent segments from being
overwritten unintentionally.

No explicit error event is generated by the system in case of a pointer saturation;
therefore, it is the user’s responsibility to prevent this condition.

Note: PEC data transfers do not use the data page pointers DPP3 ... DPPO.
Unused PEC pointers may be used for general data storage.

User’s Manual 5-22 V2.1, 2004-03
ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
technologies System Units (Vol. 1 of 2)
Interrupt and Trap Functions

SRCPx
PEC Source Pointer XSFR (ECyy,/--, Table 5-7) Reset Value: 0000,

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T T T T T T

srcpx
rwh
Field Bits Type | Description
srcpx [15:0] [rwh Source Pointer Offset of Channel x
Source address bits 15 ... 0

DSTPx
PEC Destination Pointer XSFR (ECyy,/--, Table 5-7) Reset Value: 0000,

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

dstpx
rwh
Field Bits Type | Description
dstpx [15:0] [rwh Destination Pointer Offset of Channel x
Destination address bits 15 ... 0

PECSEGXx
PEC Segment Pointer XSFR (ECyy,/--, Table 5-7) Reset Value: 0000,
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
srcsegx dstsegx
1 1 1 r\IN 1 1 r‘\I,v

Field Bits Type |Description

srcsegx [15:8] |rw Source Pointer Segment of Channel x
Source address bits 23 ... 16

dstsegx [7:0] rw Destination Pointer Segment of Channel x
Destination address bits 23 ... 16

User’s Manual 5-23 V2.1, 2004-03
ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
technologies System Units (Vol. 1 of 2)
Interrupt and Trap Functions
Table 5-7 PEC Data Pointer Register Addresses
Channel # 0 1 2 3 4 5 6 7
PECSEGXx EC80, |EC82, |EC84, |EC86, |EC88, |EC8A, |EC8C, |ECS8E,
SRCPx EC40,, |EC44, |EC48, |ECAC, |EC50, |EC54, |EC58, |EC5C,
DSTPx EC42, |EC46,, | EC4A, |EC4E, |EC52, EC56, |EC5A, |EC5E,

Note: If word data transfer is selected for a specific PEC channel (BWT = 0), the
respective source and destination pointers must both contain a valid word address
which points to an even byte boundary. Otherwise, the lllegal Word Access trap
will be invoked when this channel is used.

5.4.2 PEC Transfer Control

The PEC Transfer Count Field COUNT controls the behavior of the respective PEC
channel. The contents of bitfield COUNT select the action to be taken at the time the
request is activated. COUNT may allow a specified number of PEC transfers, unlimited
transfers, or no PEC service at all. Table 5-8 summarizes, how the COUNT field, the
interrupt requests flag IR, and the PEC channel action depend on the previous contents
of COUNT.

Table 5-8 Influence of Bitfield COUNT
Previous Modified IR after | Action of PEC Channel and Comments
COUNT COUNT Service
FFy FFy 0 Move a Byte/Word
Continuous transfer mode, i.e. COUNT is not
modified
FE,...024 |FDy...01, |O Move a Byte/Word and decrement COUNT
01y 00y, 1 EOPINT = 0 (channel-specific interrupt)
Move a Byte/Word
Leave request flag set, which triggers another
request
0 EOPINT = 1 (separate end-of-PEC interrupt)
Move a Byte/Word
Clear request flag, set the respective PEC
subnode request flag CxIR instead”
00y, 00y — No PEC action!
Activate interrupt service routine rather than
PEC channel

1) Setting a subnode request flag also sets flag EOPIR if the subnode request is enabled (CxIE = 1).

User’s Manual
ICU_X41, V2.1

5-24 V2.1, 2004-03

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Interrupt and Trap Functions

The PEC transfer counter allows service of a specified number of requests by the
respective PEC channel, and then (when COUNT reaches 00,) activation of an interrupt
service routine, either associated with the PEC channel’s priority level or with the general
end-of-PEC interrupt. After each PEC transfer, the COUNT field is decremented (except
for COUNT = FF,) and the request flag is cleared to indicate that the request has been
serviced.

When COUNT contains the value 00y, the respective PEC channel remains idle and the
associated interrupt service routine is activated instead. This allows servicing requests
on all priority levels by standard interrupt service routines.

Continuous transfers are selected by the value FF in bitfield COUNT. In this case,
COUNT is not modified and the respective PEC channel services any request until it is
disabled again.

When COUNT is decremented from 01, to 00, after a transfer, a standard interrupt is
requested which can then handle the end of the PEC block transfer (channel-specific
interrupt or common end-of-PEC interrupt, see Table 5-8).

User’s Manual 5-25 V2.1, 2004-03
ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Interrupt and Trap Functions

5.4.3 Channel Link Mode for Data Chaining

In channel link mode, every two PEC channels build a pair (channels 0+1, 2+3, 4+5,
6+7), where the two channels of a pair are activated in turn. Requests for the even
channel trigger the currently active PEC channel (or the end-of-block interrupt), while
requests for the odd channel only trigger its associated interrupt node. When the transfer
count of one channel expires, control is switched to the other channel, and back. This
mode supports data chaining where independent blocks of data can be transferred to the
same destination (or vice versa), e.g. to build communication frames from several
blocks, such as preamble, data, etc.

Channel link mode for a pair of channels is enabled if at least one of the channel link
control bits (bit CL in register PECCx) of the respective pair is set. A linked channel pair
is controlled by the priority-settings (level, group) for its even channel. After enabling
channel link mode the even channel is active.

Channel linking is executed if the active channel’s link control bit CL is 1 at the time its
transfer count decrements from 1 to 0 (count > 0 before) and the transfer count of the
other channel is non-zero. In this case the active channel issues an EOP interrupt
request and the respective other channel of the pair is automatically selected.

Note: Channel linking always begins with the even channel.

Channel linking is terminated if the active channel’s link control bit CL is 0 at the time
its transfer count decrements from 1 to O, or if the transfer count of the respective linked
channel is zero. In this case an interrupt is triggered as selected by bit EOPINT (channel-
specific or general EOP interrupt).

A data-chaining sequence using PEC channel linking is programmed by setting bit CL
together with a transfer count value (> 0). This is repeated, triggered by the channel link
interrupts, for the complete sequence. For the last transfer, the interrupt routine should
clear the respective bit CL, so, at the end of the complete transfer, either a standard or
an END of PEC interrupt can be selected by bit EOPINT of the last channel.

Note: To enable linking, initially both channels must receive a non-zero transfer count.
For the rest of the sequence only the channel with the expired transfer count
needs to be reconfigured.

User’s Manual 5-26 V2.1, 2004-03
ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Interrupt and Trap Functions

5.4.4 PEC Interrupt Control

When the selected number of PEC transfers has been executed, the respective PEC
channel is disabled and a standard interrupt service routine is activated instead. Each
PEC channel can either activate the associated channel-specific interrupt node, or
activate its associated PEC subnode request flag in register PECISNC, which then
activates the common node request flag in register EOPIC (see Figure 5-4).

PECISNC
PEC Intr. Sub-Node Ctrl. Reg. SFR (FFA8,/D4,) Reset Value: 0000,

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C7IR|C7IE |C6IR|C6IE |C5IR|C5IE |C4IR | C4IE |C3IR|C3IE |C2IR|C2IE |C1IR|C1IE |COIR| COIE

rwh rw rwh rw ‘rwh rw rwh rrw rwh rw ‘rwh rw [rwh rrw [rwh rw

Field Bits Type |Description

CxIR [2x+1] |rwh Interrupt Request Flag of PEC Channel x

x=7..0 0 No request from PEC channel x pending
1 PEC channel x has raised an end-of-PEC

interrupt request
Note: These request flags must be cleared by SW.

CxIE [2X] rw Interrupt Enable Control Bit of PEC Channel x

x=7..0 (individually enables/disables a specific source)
0 End-of-PEC request of channel x disabled
1 End-of-PEC request of channel x enabled"

1) It is recommended to clear an interrupt request flag (CxIR) before setting the respective enable flag (CxIE).
Otherwise, former requests still pending cannot trigger a new interrupt request.

EOPIC
End-of-PEC Intr. Ctrl. Reg. ESFR (F180,/C0,,) Reset Value: 0000,
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EOP EOP
- - - - - - - |GPX R | IE ILVL GLVL
rw rwh rw w w

Note: Please refer to the general Interrupt Control Register description for an
explanation of the control fields.

User’s Manual 5-27 V2.1, 2004-03
ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Interrupt and Trap Functions

PECISNC

C7IR|C7IE|C6IR|C6IE |C5IR|C5IE|C4IR|C4IE|C3IR|C3IE|C2IR|C2IE|C1IR|C1IE|COIR|COIE
T T T T R T T T
o3 o3 o3 o3 o3 o3 o3 o3

Interrupt Request
Pulse Generator

EOPIC L\

| | |
ololololo] o] o|apx|EOP|EOP

|
R | IE | ILYL | GLIVL

15 87 0
MCD04914

Figure 5-4 End of PEC Interrupt Sub Node

Note: The interrupt service routine must service and clear all currently active requests
before terminating. Requests occurring later will set EOPIR again and the service
routine will be re-entered.

User’s Manual 5-28 V2.1, 2004-03
ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
technologies System Units (Vol. 1 of 2)
Interrupt and Trap Functions

5.5 Prioritization of Interrupt and PEC Service Requests

Interrupt and PEC service requests from all sources can be enabled so they are
arbitrated and serviced (if they win), or they may be disabled, so their requests are
disregarded and not serviced.

Enabling and disabling interrupt requests may be done via three mechanisms:

¢ Control Bits
* Priority Level
e ATOMIC and EXTended Instructions

Control Bits allow switching of each individual source “ON” or “OFF” so that it may
generate a request or not. The control bits (xxIE) are located in the respective interrupt
control registers. All interrupt requests may be enabled or disabled generally via bit IEN
in register PSW. This control bit is the “main switch” which selects if requests from any
source are accepted or not.

For a specific request to be arbitrated, the respective source’s enable bit and the global
enable bit must both be set.

The Priority Level automatically selects a certain group of interrupt requests to be
acknowledged and ignores all other requests. The priority level of the source that won
the arbitration is compared against the CPU’s current level and the source is serviced
only if its level is higher than the current CPU level. Changing the CPU level to a specific
value via software blocks all requests on the same or a lower level. An interrupt source
assigned to level 0 will be disabled and will never be serviced.

The ATOMIC and EXTend instructions automatically disable all interrupt requests for
the duration of the following 1 ... 4 instructions. This is useful for semaphore handling,
for example, and does not require to re-enable the interrupt system after the inseparable
instruction sequence.

Interrupt Class Management

An interrupt class covers a set of interrupt sources with the same importance, i.e. the
same priority from the system’s viewpoint. Interrupts of the same class must not interrupt
each other. The XC164 supports this function with two features:

Classes with up to eight members can be established by using the same interrupt priority
(ILVL) and assigning a dedicated group level to each member. This functionality is built-
in and handled automatically by the interrupt controller.

Classes with more than eight members can be established by using a number of
adjacent interrupt priorities (ILVL) and the respective group levels (eight per ILVL). Each
interrupt service routine within this class sets the CPU level to the highest interrupt
priority within the class. All requests from the same or any lower level are blocked now,
i.e. no request of this class will be accepted.

User’s Manual 5-29 V2.1, 2004-03
ICU_X41, V2.1

—

: XC164-16 Derivatives
!ntmegon/ System Units (Vol. 1 of 2)

Interrupt and Trap Functions

The example shown below establishes 3 interrupt classes which cover 2 or 3 interrupt
priorities, depending on the number of members in a class. A level 6 interrupt disables
all other sources in class 2 by changing the current CPU level to 8, which is the highest
priority (ILVL) in class 2. Class 1 requests or PEC requests are still serviced, in this case.

In this way, the interrupt sources (excluding PEC requests) are assigned to 3 classes of
priority rather than to 7 different levels, as the hardware support would do.

Table 5-9 Software Controlled Interrupt Classes (Example)

ILVL Group Level Interpretation

(Priority) 7 16 |5 43 |2(1]0

15 PEC service on up to 8 channels
14

13

12 XX |X|X|X|X|X|X|Interrupt Class 1

11 X 9 sources on 2 levels

10

9

8 X|X[X|X|X|[X]|X]|X|Interrupt Class 2

7 X [X x| xxx|x|x|17 sources on 3 levels

6 X

5 XXX |X|X|X|X|X|Interrupt Class 3

4 X 9 sources on 2 levels

3

2

1

0 No service!

User’s Manual 5-30 V2.1, 2004-03

ICU_X41, V2.1

—

Infineon XC1 64-'16 Derivatives
technologics System Units (Vol. 1 of 2)
Interrupt and Trap Functions

5.6 Context Switching and Saving Status

Before an interrupt request that has been arbitrated is actually serviced, the status of the
current task is automatically saved on the system stack. The CPU status (PSW) is saved
together with the location at which execution of the interrupted task is to be resumed after
returning from the service routine. This return location is specified through the Instruction
Pointer (IP) and, in the case of a segmented memory model, the Code Segment Pointer
(CSP). Bit SGTDIS in register CPUCONT1 controls how the return location is stored.

The system stack receives the PSW first, followed by the IP (unsegmented), or followed
by CSP and then IP (segmented mode). This optimizes the usage of the system stack if
segmentation is disabled.

The CPU priority field (ILVL in PSW) is updated with the priority of the interrupt request
to be serviced, so the CPU now executes on the new level.

The register bank select field (BANK in PSW) is changed to select the register bank
associated with the interrupt request. The association between interrupt requests and
register banks are partly pre-defined and can partly be programmed.

The interrupt request flag of the source being serviced is cleared. IP and CSP are loaded
with the vector associated with the requesting source, and the first instruction of the
service routine is fetched from the vector location which is expected to branch to the
actual service routine (except when the interrupt jump table cache is used). All other
CPU resources, such as data page pointers and the context pointer, are not affected.

When the interrupt service routine is exited (RETI is executed), the status information is
popped from the system stack in the reverse order, taking into account the value of bit
SGTDIS.

High Status of
Addresses Interrupted
Task
SP—>
PSW PSW
SP—>» IP CSP
IP <«—SP
Low
Addresses
a) System Stack before b) System Stack after b) System Stack after
Interrupt Entry Interrupt Entry Interrupt Entry
(Unsegmented) (Segmented)
MCD02226
Figure 5-5 Task Status Saved on the System Stack
User’s Manual 5-31 V2.1, 2004-03

ICU_X41, V2.1

—

: XC164-16 Derivatives
!nfmegon/ System Units (Vol. 1 of 2)

Interrupt and Trap Functions

Context Switching

An interrupt service routine usually saves all the registers it uses on the stack and
restores them before returning. The more registers a routine uses, the more time is spent
saving and restoring. The XC164 allows switching the complete bank of CPU registers
(GPRs) either automatically or with a single instruction, so the service routine executes
within its own separate context (see also Section 4.5.2).

There are two ways to switch the context in the XC164 core:

Switching Context of the Global Register Bank changes the complete global register
bank of CPU registers (GPRs) by changing the Context Pointer with a single instruction,
so the service routine executes within its own separate context. The instruction “SCXT
CP, #New_Bank” pushes the contents of the context pointer (CP) on the system stack
and loads CP with the immediate value “New_Bank”; this in turn, selects a new register
bank. The service routine may now use its “own registers”. This register bank is
preserved when the service routine terminates, i.e. its contents are available on the next
call. Before returning (RET]I), the previous CP is simply POPped from the system stack,
which returns the registers to the original global bank.

Resources used by the interrupting program, such as the DPPs, must eventually be
saved and restored.

Note: There are certain timing restrictions during context switching that are associated
with pipeline behavior.

Switching Context by changing the selected register bank automatically updates
bitfield BANK to select one of the two local register banks or the current global register
bank, so the service routine may now use its “own registers” directly. This local register
bank is preserved when the service routine is terminated; thus, its contents are available
on the next call.

When switching to the global register bank, the service routine usually must also switch
the context of the global register bank to get a private set of GPRs, because the global
bank is likely to be used by several tasks.

For interrupt priority levels 15 ... 12 the target register bank can be pre-selected and
then be switched automatically. The register bank selection registers BNKSELXx provide
a 2-bit field for each possible arbitration priority level. The respective bitfield is then
copied to bitfield BANK in register PSW to select the register bank, as soon as the
respective interrupt request is accepted.

Table 5-10 identifies the arbitration priority level assignment to the respective bitfields
within the four register bank selection registers.

User’s Manual 5-32 V2.1, 2004-03
ICU_X41, V2.1

—

XC164-16 Derivatives

infineon System Units (Vol. 1 of 2
Interrupt and Trap Functions
BNKSELXx
Register Bank Select Reg. x XSFR (Table 5-10) Reset Value: 0000,
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
GPRSEL7 | GPRSEL6 | GPRSEL5 | GPRSEL4 | GPRSEL3 | GPRSEL2 | GPRSEL1 | GPRSELO
v A A A o o o o
Field Bits Type | Description
GPRSELy 2y+1 |rw Register Bank Selection
(y=7...0) :2y] 00 Global register bank
01 Reserved
10 Local register bank 1
11 Local register bank 2
Table 5-10 Assignment of Register Bank Control Fields
Bank Select Control Register Interrupt Node Priority Notes
Register Name | Bitfields Intr. Level Group Levels
BNKSELO GPRSELO ... 3 12 0..3 Lower
(EC20/--) GPRSEL4 ... 7 13 0..3 group
levels
BNKSEL1 GPRSELO ... 3 14 0..3
(EC22,/--) GPRSEL4 ... 7 15 0..3
BNKSEL2 GPRSELO ... 3 12 4..7 Upper
(EC24y/--) GPRSEL4 ... 7 13 4..7 group
levels
BNKSELS3 GPRSELO ... 3 14 4..7
(EC26,/--) GPRSEL4 ... 7 15 4..7
User’s Manual 5-33 V2.1, 2004-03

ICU_X41, V2.1

—

Infine on XC1 64-'1 6 Derivatives
lechnologies - System Units (Vol. 1 of 2)
Interrupt and Trap Functions

5.7 Interrupt Node Sharing

Interrupt nodes may be shared among several module requests if either the requests are
generated mutually exclusively or the requests are generated at a low rate. If more than
one source is enabled in this case, the interrupt handler will first need to determine the
requesting source. However, this overhead is not critical for low rate requests.

This node sharing is either controlled via interrupt sub-node control registers (ISNC)
which provide separate request flags and enable bits for each supported request source,
or the involved request sources are simply ORed to trigger the common node. The
interrupt level used for arbitration is determined by the node control register (... I1C).

The specific request flags within ISNC registers must be reset by software, contrary to
the node request bits which are cleared automatically.

Table 5-11 Sub-Node Control Bit Allocation

Interrupt Node Interrupt Sources Control

EOPIC PEC channels 7 ... 0 PECISNC

RTC_IC RTC: overflow of T14, CNTO ... CNT3 RTC_ISNC
ASCO_ABIC ASCO: autobaud detect start, error request ORed

ASC1_ABIC ASCO: autobaud detect start, error request ORed

User's Manual 5-34 V2.1, 2004-03

ICU_X41, V2.1

—

lechnologies - System Units (Vol. 1 of 2)
Interrupt and Trap Functions
5.8 External Interrupts

Although the XC164 has no dedicated INTR input pins, it supports many possibilities to
react to external asynchronous events. It does this by using a number of 10 lines for
interrupt input. The interrupt function may be either combined with the pin’s main function
or used instead of it if the main pin function is not required.

The Fast External Interrupt detection provides flexible wake-up signals even in sleep
mode. This function can also generate additional interrupt requests from external input
signals.

Table 5-12 Pins Usable as External Interrupt Inputs

Port Pin Original Function Control Register
P1H.7-4/CC27-2410 | CAPCOM Register 27-24 Capture Input CC27-CC24
P1H.0/CC23I10 CAPCOM Register 23 Capture Input CC23
P1L.7/CC22I10 CAPCOM Register 22 Capture Input CC22
P9.5-0/CC21-1610 | CAPCOM Register 21-16 Capture Input CC21-CC16
P3.2/CAPIN GPT2 capture input pin T5CON
P3.7/T2IN Auxiliary timer T2 input pin T2CON
P3.5/T4IN Auxiliary timer T4 input pin T4CON

For each of these pins, either a positive, a negative, or both a positive and a negative
external transition can be selected to cause an interrupt or PEC service request. The
edge selection is performed in the control register of the peripheral device associated
with the respective port pin (separate control for fast external interrupts). The peripheral
must be programmed to a specific operating mode to allow generation of an interrupt by
the external signal. The priority of the interrupt request is determined by the interrupt
control register of the respective peripheral interrupt source, and the interrupt vector of
this source will be used to service the external interrupt request.

Note: In order to use any of the listed pins as an external interrupt input, it must be
switched to input mode via its direction control bit DPx.y in the respective port
direction control register DPx.

When port pins CCxIO are to be used as external interrupt input pins, bitfield CCMODx
in the control register of the corresponding capture/compare register CCx must select
capture mode. When CCMODx is programmed to 001, the interrupt request flag CCxIR
in register CCxIC will be set on a positive external transition at pin CCxIO. When
CCMODx is programmed to 010g, a negative external transition will set the interrupt
request flag. When CCMODx = 011, both a positive and a negative transition will set
the request flag. In all three cases, the contents of the allocated CAPCOM timer will be
latched into capture register CCx, independent of whether or not the timer is running.

User’s Manual 5-35 V2.1, 2004-03
ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Interrupt and Trap Functions

When the interrupt enable bit CCxIE is set, a PEC request or an interrupt request for
vector CCxINT will be generated.

Pins T2IN or T4IN can be used as external interrupt input pins when the associated
auxiliary timer T2 or T4 in block GPT1 is configured for capture mode. This mode is
selected by programming the mode control fields T2M or T4M in control registers
T2CON or T4CON to 1015. The active edge of the external input signal is determined by
bitfields T2l or T4l. When these fields are programmed to X01, interrupt request flags
T2IR or T4IR in registers T2IC or T4IC will be set on a positive external transition at pins
T2IN or T4IN, respectively. When T2l or T4l is programmed to X10g, then a negative
external transition will set the corresponding request flag. When T2| or T4l is
programmed to X115, both a positive and a negative transition will set the request flag.
In all three cases, the contents of the core timer T3 will be captured into the auxiliary
timer registers T2 or T4 based on the transition at pins T2IN or T4IN. When the interrupt
enable bits T2IE or T4IE are set, a PEC request or an interrupt request for vector T2INT
or T4INT will be generated.

Pin CAPIN differs slightly from the timer input pins as it can be used as external interrupt
input pin without affecting peripheral functions. When the capture mode enable bit T5SC
in register TSCON is cleared to ‘0’, signal transitions on pin CAPIN will only set the
interrupt request flag CRIR in register CRIC, and the capture function of register
CAPREL is not activated.

So register CAPREL can still be used as reload register for GPT2 timer T5, while pin
CAPIN serves as external interrupt input. Bitfield Cl in register TSCON selects the
effective transition of the external interrupt input signal. When Cl is programmed to 01g,
a positive external transition will set the interrupt request flag. Cl = 105 selects a negative
transition to set the interrupt request flag, and with Cl = 115, both a positive and a
negative transition will set the request flag. When the interrupt enable bit CRIE is set, an
interrupt request for vector CRINT or a PEC request will be generated.

Note: The non-maskable interrupt input pin NMI and the reset input RSTIN provide
another possibility for the CPU to react to an external input signal. NMI and RSTIN
are dedicated input pins which cause hardware traps.

User’s Manual 5-36 V2.1, 2004-03
ICU_X41, V2.1

—

Infineon
ec no Ogles/

XC164-16 Derivatives
System Units (Vol. 1 of 2)

Interrupt and Trap Functions

Fast External Interrupts

The fast external interrupt pins are sampled every system clock cycle; that is, external
events are scanned and detected in time frames of 1/fgys. The arbitration and processing
of these interrupt requests, however, is done with the normal timing.

The External Interrupt Control register EXICON selects the trigger transition (rising,
falling or both) individually for each of 8 fast external interrupts.

These fast external interrupts use the interrupt nodes and vectors of the CAPCOM
channels CC15 ... CC8, so the capture/compare function cannot be used.

EXICON
External Intr. Control Reg. ESFR (F1C0,/EOQ,) Reset Value: 0000,
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EXI7ES EXIGES EXISES EXI4ES EXI3ES EXI2ES EXIMES EXIOES
W W W w W w W W
Field Bits Type | Description
EXIXES [15:14] |rw External Interrupt x Edge Selection Field
(x=7...0) 00 Fast external interrupts disabled: std. mode
[1:0] 01 Interrupt on positive edge (rising)
10 Interrupt on negative edge (falling)
11 Interrupt on any edge (rising or falling)

External Interrupt Source Control

The input source for each of the fast external interrupts (controlled via register EXICON)
can be derived from up to three associated port pins (standard pin EXnIN or two alternate
sources). Activating an alternate input source, for example, allows the detection of
transitions on the interface lines of disabled interfaces. Upon this trigger, the respective
interface can be reactivated and respond to the detected activity.

Source selection is controlled via registers EXISELO and EXISEL1. Besides selecting
one of the three possible input pins, two or all of them can also be logically combined.
This can be used to increase the number of wake-up lines or to define specific signal
combinations to trigger a wake-up interrupt.

User’s Manual 5-37

ICU_X41, V2.1

V2.1, 2004-03

—

Infineon XC164-16 Derivatives
technologies System Units (Vol. 1 of 2)
Interrupt and Trap Functions
EXISELO
Ext. Interrupt Source Reg. 0 ESFR (F1DA,/ED,)) Reset Value: 0000,
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EXI3SS EXI2SS EXI1SS EXIOSS
W W W W
EXISEL1
Ext. Interrupt Source Reg. 1 ESFR (F1D8,/EC,,) Reset Value: 0000,
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EXI7SS EXI6SS EXI5SS EXI4SS
W W w W
Field Bits Type |Description
EXIxSS [15:12] | rw External Interrupt x Source Selection Field
(x=7...0) 0000 Input from associated EXxIN pin
[3:0] 0001 Input from alternate pin AltA
0010 Input from alternate pin AltB

0011

0100

0101

0110

0111

Input from pin EXxIN

ORed with alternate pin AltA
Input from pin EXxIN

ANDed with alternate pin AltA
Input from alternate pin AltA
ORed with alternate pin AltB
Input from alternate pin AltA
ANDed with alternate pin AltB
Input from pin EXxIN

ORed with pin AltA ORed with pin AltB

1 XXX Reserved, do not use

The Table 5-13 summarizes the association of the bitfields of register EXISEL (i.e. the
interrupt lines) with the respective input pins.

User’s Manual
ICU_X41, V2.1

5-38

V2.1, 2004-03

—

Infineon XC164-16 Derivatives
lechnologies System Units (Vol. 1 of 2)
Interrupt and Trap Functions
Table 5-13 Connection of Interrupt Inputs to External Interrupt Nodes
Control |Std. Pin | Alternate | Alternate | Interrupt | Associated Notes
Bitfield |EXnIN Pin AItA |Pin AltB | Ctrl. Reg. | Interface
EXIOSS |P1H.0 P1H.3 P1H.0 CcCsIC SSC1 -
EXI1SS |P1H.A P3.1 — CCalC ASC1 -
EXI2SS |P1H.2 P3.11 P3.10 CC10IC |ASCO —
EXI3SS |P1H.3 P3.13 P3.12 CC11IC | SSCO -
EXI4SS |P1H.4 P4.7 P4.5 CC12IC |CAN_A The actual
EXI5SS |P1H.5 |P4.6 P4.4 CC13IC |CAN_B interface
EXIBSS |P1H6 |P9.3 |P91 | CCl4IC |- P rogramm-
EXI7SS |P1H.7 P9.2 P9.0 CC15IC | CAN_A, CAN_B |able

External Interrupts During Sleep Mode

During Sleep Mode, all peripheral clock signals are deactivated. This also disables the
standard edge detection logic for the fast external interrupts. However, transitions on
these interrupt inputs must be recognized in order to initiate the wake-up. This is
accomplished by a special edge detection logic for the fast external interrupts which
requires no clock signal (therefore also works in Sleep mode) and is equipped with an
analog noise filter. This filter suppresses spikes (generated by noise) up to 10 ns. Input
pulses with a duration of 100 ns minimum are recognized and generate an interrupt
request.

This filter delays the recognition of an external wake-up signal by approximately 100 ns,
but the spike suppression ensures safe and robust operation of the sleep/wake-up
mechanism in an active environment.

f———100ns ——— =
»: 10ns t=— :
|
Input | | T
Signal 4/ \ | : \
\
|] |
nterrupt |
Request : 1 / /i
'Rejected‘ "Recognized
MCDO04456
Figure 5-6 Input Noise Filter Operation
User’s Manual 5-39 V2.1, 2004-03

ICU_X41, V2.1

—

: XC164-16 Derivatives
!nfmegon/ System Units (Vol. 1 of 2)

Interrupt and Trap Functions

External Interrupt Pulse Timing

External interrupt inputs are evaluated by a synchronous logic and by an asynchronous
logic. The synchronous logic supports the recognition of short interrupt pulses at higher
system frequencies, the asynchronous logic ensures recognition of interrupt pulses
during sleep mode, when no system clock is available.

An external interrupt signal is safely recognized in two cases:

e ifitis active for more than 100 ns (async. logic with spike filter), or
» ifitis active for more than 2 cycles of f5yg (Sync. logic).

The interrupt signal is recognized after whatever condition becomes true first.

Note: After wake-up from Sleep mode, the time span until the PLL becomes locked is
not critical for new external interrupt pulses to be correctly synchronized, because
in this case the asynchronous logic will detect the external interrupt correctly, if it
is active for at least 100 ns.

Note: The NMI input features the same spike filter and the same timing requirements.

5.9 OCDS Requests

The OCDS module issues high-priority break requests or standard service requests. The
break requests are routed directly to the CPU (like the hardware trap requests) and are
prioritized there. Therefore, break requests ignore the standard interrupt arbitration and
receive highest priority.

The standard OCDS service requests are routed to the CPU Action Control Unit together
with the arbitrated interrupt/PEC requests. The service request with the higher priority is
sent to the CPU to be serviced. If both the interrupt/PEC request and the OCDS request
have the same priority level, the interrupt/PEC request wins.

This approach ensures precise break control, while affecting the system behavior as little
as possible.

The CPU Action Control Unit also routes back request acknowledges and denials from
the core to the corresponding requestor.

User’s Manual 5-40 V2.1, 2004-03
ICU_X41, V2.1

—

Infine on XC1 64-'1 6 Derivatives
lechnologies - System Units (Vol. 1 of 2)
Interrupt and Trap Functions

5.10 Service Request Latency

The numerous service requests of the XC164 (requests for interrupt or PEC service) are
generated asynchronously with respect to the execution of the instruction flow.
Therefore, these requests are arbitrated and are inserted into the current instruction
stream. This decouples the service request handling from the currently executed
instruction stream, but also leads to a certain latency.

The request latency is the time from activating a request signal at the interrupt controller
(ITC) until the corresponding instruction reaches the pipeline’s execution stage.
Table 5-14 lists the consecutive steps required for this process.

Table 5-14 Steps Contributing to Service Request Latency

Description of Step Interrupt Response | PEC Response

Request arbitration in 3 stages, 9 cycles 9 cycles
leads to acceptance by the CPU
(see Section 5.2)

Injection of an internal instruction into | 4 cycles 4 cycles
the pipeline’s instruction stream

The first instruction fetched from the 4 cycles / OV ---
interrupt vector table reaches the
pipeline’s execution stage

Resulting minimum request latency 17/13 cycles 13 cycles

1) Can be saved by using the interrupt jump table cache (see Section 5.3).

User’s Manual 5-41 V2.1, 2004-03
ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Interrupt and Trap Functions

Sources for Additional Delays

Because the service requests are inserted into the current instruction stream, the
properties of this instruction stream can influence the request latency.

Table 5-15 Additional Delays Caused by System Logic

Reason for Delay Interrupt PEC Response
Response
Interrupt controller busy, max. 9 cycles max. 9 cycles

because it is just executing an arbitration cycle

Pipeline is stalled, 2 X T accmax 2 X T accmax
because the 2 instructions already in the pipeline
preceding the injected instruction (PEC or ITRAP)
need to complete before the injected instruction
can be executed. For example, the instructions
may need to write/read data to/from a peripheral or
memory, or may need extra cycles to complete.

Pipeline cancelled, 4 cycles 4 cycles
because instructions preceding the injected
instruction in the pipeline update core SFRs

Memory access for stack writes (if not to DPRAM or | 2/3 x Tpcc" ---
DSRAM)

Memory access for vector table read 2 X Tace ---
(except for intr. jump table cache)

1) Depending on segmentation off/on.

The actual response to an interrupt request may be delayed further depending on
programming techniques used by the application. The following factors can contribute:

* Actual interrupt service routine is only reached via a JUMP from the interrupt vector
table.
Time-critical instructions can be placed directly into the interrupt vector table,
followed by a branch to the remaining part of the interrupt service routine. The space
between two adjacent vectors can be selected via bitfield VECSC in register
CPUCONT1.

e Context switching is executed before the intended action takes place (see
Section 5.6)
Time-critical instructions can be programmed “non-destructive” and can be executed
before switching context for the remaining part of the interrupt service routine.

User’s Manual 5-42 V2.1, 2004-03
ICU_X41, V2.1

—

Infineon XC1 64-'1 6 Derivatives
technologies System Units (Vol. 1 of 2)
Interrupt and Trap Functions

5.11 Trap Functions

Traps interrupt current execution in a manner similar to standard interrupts. However,
trap functions offer the possibility to bypass the interrupt system’s prioritization process
for cases in which immediate system reaction is required. Trap functions are not
maskable and always have priority over interrupt requests on any priority level.

The XC164 provides two different kinds of trapping mechanisms: Hardware Traps are
triggered by events that occur during program execution (such as illegal access or
undefined opcode); Software Traps are initiated via an instruction within the current
execution flow.

Software Traps

The TRAP instruction causes a software call to an interrupt service routine. The vector
number specified in the operand field of the trap instruction determines which vector
location in the vector table will be branched to.

Executing a TRAP instruction causes an effect similar to the occurrence of an interrupt
at the same vector. PSW, CSP (in segmentation mode), and IP are pushed on the
internal system stack and a jump is taken to the specified vector location. When a trap
is executed, the CSP for the trap service routine is loaded from register VECSEG. No
Interrupt Request flags are affected by the TRAP instruction. The interrupt service
routine called by a TRAP instruction must be terminated with a RETI (return from
interrupt) instruction to ensure correct operation.

Note: The CPU priority level and the selected register bank in register PSW are not
modified by the TRAP instruction, so the service routine is executed on the same
priority level from which it was invoked. Therefore, the service routine entered by
the TRAP instruction uses the original register bank and can be interrupted by
other traps or higher priority interrupts, other than when triggered by a hardware
event.

Hardware Traps

Hardware traps are issued by faults or specific system states which occur during runtime
of a program (not identified at assembly time). A hardware trap may also be triggered
intentionally, for example: to emulate additional instructions by generating an lllegal
Opcode trap. The XC164 distinguishes eight different hardware trap functions. When a
hardware trap condition has been detected, the CPU branches to the trap vector location
for the respective trap condition. The instruction which caused the trap is completed
before the trap handling routine is entered.

Hardware traps are non-maskable and always have priority over every other CPU
activity. If several hardware trap conditions are detected within the same instruction
cycle, the highest priority trap is serviced (see Table 5-3).

User’s Manual 5-43 V2.1, 2004-03
ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Interrupt and Trap Functions

PSW, CSP (in segmentation mode), and IP are pushed on the internal system stack and
the CPU level in register PSW is set to the highest possible priority level (level 15),
disabling all interrupts. The global register bank is selected. Execution branches to the
respective trap vector in the vector table. A trap service routine must be terminated with
the RETI instruction.

The eight hardware trap functions of the XC164 are divided into two classes:
Class A traps are:

e External Non-Maskable Interrupt (NMI)
e Stack Overflow

e Stack Underflow trap

e Software Break

These traps share the same trap priority, but have individual vector addresses.
Class B traps are:

Undefined Opcode

Program Memory Access Error
Protection Fault

lllegal Word Operand Access

The Class B traps share the same trap priority and the same vector address.

The bit-addressable Trap Flag Register (TFR) allows a trap service routine to identify the
kind of trap which caused the exception. Each trap function is indicated by a separate
request flag. When a hardware trap occurs, the corresponding request flag in register
TFR is setto ‘1’

The reset functions (hardware, software, watchdog) may be regarded as a type of trap.
Reset functions have the highest system priority (trap priority IlI).

Class A traps have the second highest priority (trap priority II), on the 3™ rank are
Class B traps, so a Class A trap can interrupt a Class B trap. If more than one Class A
trap occur at a time, they are prioritized internally, with the NMI trap at the highest and
the software break trap at the lowest priority.

In the case where e.g. an Undefined Opcode trap (class B) occurs simultaneously with
an NMl trap (class A), both the NMI and the UNDOPC flag is set, the IP of the instruction
with the undefined opcode is pushed onto the system stack, but the NMI trap is executed.
After return from the NMI service routine, the IP is popped from the stack and
immediately pushed again because of the pending UNDOPC trap.

Note: The trap service routine must clear the respective trap flag; otherwise, a new trap
will be requested after exiting the service routine. Setting a trap request flag by
software causes the same effects as if it had been set by hardware.

User’s Manual 5-44 V2.1, 2004-03
ICU_X41, V2.1

—

Infineon
ec no Ogles/

XC164-16 Derivatives
System Units (Vol. 1 of 2)

TFR
Trap Flag Register

15 14 13 12

11 10

Interrupt and Trap Functions

SFR (FFAC,/D6,,)

9 8 7 6 5 4 3 2 1 0

Reset Value: 0000,

v | STK | STK ?g; | | .| _ |uND| | _ |PAC|PRT|ILL| | _
OF | UF K OPC ER | FLT [OPA
rwh rwh rwh rwh - - - rwh rwh rwh rwh
Field Bits Type |Description
NMI 15 rwh Non Maskable Interrupt Flag
0 No non-maskable interrupt detected
1 A negative transition (falling edge) has been
detected at pin NMI
STKOF 14 rwh Stack Overflow Flag
0 No stack overflow event detected
1 The current stack pointer value falls below the
contents of register STKOV
STKUF 13 rwh Stack Underflow Flag
0 No stack underflow event detected
1 The current stack pointer value exceeds the
contents of register STKUN
SOFTBRK 12 rwh Software Break
0 No software break event detected
1 Software break event detected
UNDOPC 7 rwh Undefined Opcode
0 No undefined opcode event detected
1 The currently decoded instruction has no valid
XC164 opcode
PACER 4 rwh Program Memory Access Error
0 No access error event detected
1 lllegal or erroneous access detected
PRTFLT 3 rwh Protection Fault
0 No protection fault event detected
1 A protected instruction with an illegal format
has been detected
ILLOPA 2 rwh lllegal Word Operand Access
0 No illegal word operand access event detected
1 A word operand access (read or write) to an
odd address has been attempted

User’s Manual
ICU_X41, V2.1

5-45 V2.1, 2004-03

—

: XC164-16 Derivatives
!nfmegon/ System Units (Vol. 1 of 2)

Interrupt and Trap Functions

Class A Traps

Class A traps are generated by the high priority system NMI or by special CPU events
such as the software break, a stack overflow, or an underflow event. Class A traps are
not used to indicate hardware failures. After a Class A event, a dedicated service routine
is called to react on the events. Each Class A trap has its own vector location in the
vector table. Class A traps cannot interrupt atomic/extend sequences and I/O accesses
in progress, because after finishing the service routine, the instruction flow must be
further correctly executed. For example, an interrupted extend sequence cannot be
restarted. All Class A traps are generated in the pipeline during the execution of
instructions, except for NMI, which is an asynchronous external event. Class A trap
events can be generated only during the memory stage of execution, so traps cannot be
generated by two different instructions in the pipeline in the same CPU cycle. The
execution of instructions which caused a Class A trap event is always completed. In the
case of an atomic/extend sequence or I/O read access in progress, the complete
sequence is executed. Upon completion of the instruction or sequence, the pipeline is
canceled and the IP of the instruction following the last one executed is pushed on the
stack. Therefore, in the case of a Class A trap, the stack always contains the IP of the
first not-executed instruction in the instruction flow.

Note: The Branch Folding Unit allows the execution of a branch instruction in parallel
with the preceding instruction. The pre-processed branch instruction is combined
with the preceding instruction. The branch is executed together with the instruction
which caused the Class A trap. The IP of the first following not-executed
instruction in the instruction flow is then pushed on the stack.

If more than one Class A trap occur at the same time, they are prioritized internally. The
NMI trap has the highest priority and the software break has the lowest.

Note: In the case of two different Class A traps occurring simultaneously, both trap flags
are set. The IP of the instruction following the last one executed is pushed on the
stack. The trap with the higher priority is executed. After return from the service
routine, the IP is popped from the stack and immediately pushed again because
of the other pending Class A trap (unless the trap related to the second trap flag
in TFR has been cleared by the first trap service routine).

User’s Manual 5-46 V2.1, 2004-03
ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Interrupt and Trap Functions

Class B Traps

Class B traps are generated by unrecoverable hardware failures. In the case of a
hardware failure, the CPU must immediately start a failure service routine. Class B traps
can interrupt an atomic/extend sequence and an /O read access. After finishing the
Class B service routine, a restoration of the interrupted instruction flow is not possible.

All Class B traps have the same priority (trap priority 1). When several Class B traps
become active at the same time, the corresponding flags in the TFR register are set and
the trap service routine is entered. Because all Class B traps have the same vector, the
priority of service of simultaneously occurring Class B traps is determined by software in
the trap service routine.

The Access Error is an asynchronous external (to the CPU) event while all other Class B
traps are generated in the pipeline during the execution of instructions. Class B trap
events can be generated only during the memory stage of execution, so traps cannot be
generated by two different instructions in the pipeline in the same CPU cycle.
Instructions which caused a Class B trap event are always executed, then the pipeline
is canceled and the IP of the instruction following the one which caused the trap is
pushed on the stack. Therefore, the stack always contains the IP of the first following
not-executed instruction in the instruction flow.

Note: The Branch Folding Unit allows the execution of a branch instruction in parallel
with the preceding instruction. The pre-processed branch instruction is combined
with the preceding instruction. The branch is executed together with the instruction
causing the Class B trap. The IP of the first following not-executed instruction in
the instruction flow is pushed on the stack.

A Class A trap occurring during the execution of a Class B trap service routine will be
serviced immediately. During the execution of a Class A trap service routine, however,
any Class B trap occurring will not be serviced until the Class A trap service routine is
exited with a RETI instruction. In this case, the occurrence of the Class B trap condition
is stored in the TFR register, but the IP value of the instruction which caused this trap is
lost.

Note: If a Class A trap occurs simultaneously with a Class B trap, both trap flags are set.
The IP of the instruction following the one which caused the trap is pushed into the
stack, and the Class A trap is executed. If this occurs during execution of an
atomic/extend sequence or I/O read access in progress, then the presence of the
Class B trap breaks the protection of atomic/extend operations and the Class A
trap will be executed immediately without waiting for the sequence completion.
After return from the service routine, the IP is popped from the system stack and
immediately pushed again because of the other pending Class B trap. In this
situation, the restoration of the interrupted instruction flow is not possible.

User’s Manual 5-47 V2.1, 2004-03
ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Interrupt and Trap Functions

External NMI Trap

Whenever a high to low transition on the dedicated external NMI pin (Non-Maskable
Interrupt) is detected, the NMI flag in register TFR is set and the CPU will enter the NMI
trap routine.

Stack Overflow Trap

Whenever the stack pointer is implicitly decremented and the stack pointer is equal to
the value in the stack overflow register STKOV, the STKOF flag in register TFR is set
and the CPU will enter the stack overflow trap routine.

For recovery from stack overflow, it must be ensured that there is enough excess space
on the stack to save the current system state twice (PSW, IP, in segmented mode also
CSP). Otherwise, a system reset should be generated.

Stack Underflow Trap

Whenever the stack pointer is implicitly incremented and the stack pointer is equal to the
value in the stack underflow register STKUN, the STKUF flag is set in register TFR and
the CPU will enter the stack underflow trap routine.

Software Break Trap

When the instruction currently being executed by the CPU is a SBRK instruction, the
SOFTBRK flag is set in register TFR and the CPU enters the software break debug
routine. The flag generation of the software break instruction can be disabled by the On-
chip Emulation Module. In this case, the instruction only breaks the instruction flow and
signals this event to the debugger, the flag is not set and the trap will not be executed.

Undefined Opcode Trap

When the instruction currently decoded by the CPU does not contain a valid XC164
opcode, the UNDOPC flag is set in register TFR and the CPU enters the undefined
opcode trap routine. The instruction that causes the undefined opcode trap is executed
as a NOP.

This can be used to emulate unimplemented instructions. The trap service routine can
examine the faulting instruction to decode operands for unimplemented opcodes based
on the stacked IP. In order to resume processing, the stacked IP value must be
incremented by the size of the undefined instruction, which is determined by the user,
before a RETI instruction is executed.

User’s Manual 5-48 V2.1, 2004-03
ICU_X41, V2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

Interrupt and Trap Functions

Program Memory Access Error

When a program memory access error is detected, the PACER flag is set in register TFR
and the CPU enters the PMI access error trap routine. The access error is reported in
the following cases:

¢ access to Flash memory while it is disabled

e access to Flash memory from outside while read-protection is active
* double bit error detected when reading Flash memory

* access to reserved locations (see memory map in Table 3-1)

e access to Monitor RAM, if not in emulation mode

In case of an access error, additionally the soft-trap code 1E9B,, is issued.

Protection Fault Trap

Whenever one of the special protected instructions is executed where the opcode of that
instruction is not repeated twice in the second word of the instruction and the byte
following the opcode is not the complement of the opcode, the PRTFLT flag in register
TFR is set and the CPU enters the protection fault trap routine. The protected
instructions include DISWDT, EINIT, IDLE, PWRDN, SRST, ENWDT and SRVWDT.
The instruction that causes the protection fault trap is executed like a NOP.

lllegal Word Operand Access Trap

Whenever a word operand read or write access is attempted to an odd byte address, the
ILLOPA flag in register TFR is set and the CPU enters the illegal word operand access
trap routine.

User’s Manual 5-49 V2.1, 2004-03
ICU_X41, V2.1

—

lechnologies - System Units (Vol. 1 of 2)
General System Control Functions
6 General System Control Functions

The XC164 System Control Unit (SCU) summarizes a number of central control tasks
and product specific features. These features include functional modules such as the
Watchdog Timer (WDT) or the Clock Generation Unit (CGU), as well as basic functions
such as the register protection mechanism or the reset generation.

The following general functions are provided:

* The System Reset is generated by the Reset Control Block and handles the reset
and startup behavior (internal initialization) of the chip. It controls the reset triggers
as well as the reset timing. This block controls also the basic configuration of the
XC164 via external hardware.

e The Clock Generation Unit (CGU) provides the on-chip oscillator and the Phase
Locked Loop (PLL). This block generates all clock signals for the XC164 and
distributes them to the respective modules. Also the status of the clock generation
system is indicated.

e The Central System Control Functions comprise all central control tasks like
security level selection and system behavior in Sleep mode and Powerdown mode.
Depending on the application state, different security levels (like protected and
unprotected mode) are supported by the security level control state machine.

e The Watchdog Timer (WDT) represents one of the fail-safe mechanisms which
have been implemented to prevent the controller from malfunctioning. It can detect
long term malfunctions and is always enabled after chip initialization. The WDT can
operate in Compatible mode or in Enhanced WDT mode.

* The Identification Control Block supports a set of six identification registers for
identification of the most important silicon parameters (chip manufacturer, chip type
and its properties). This information can be used for automatic test selection.

User’s Manual 6-1 V2.1, 2004-03
SCU_X41, V2.1

—

lechnologies - System Units (Vol. 1 of 2)
General System Control Functions
6.1 System Reset

The internal system reset function provides initialization of the XC164 into a defined
default state. The default state is invoked either by asserting a hardware reset signal on
pin RSTIN (Hardware Reset Input), by executing the SRST instruction (Software Reset),
or by an overflow of the watchdog timer.

Whenever one of these conditions occurs, the microcontroller is reset into a predefined
default state through an internal reset procedure. When a software reset is initiated,
pending internal hold states are cancelled and the current internal access cycle (if any)
is completed. An external bus cycle is completed. Afterwards, the bus pin drivers and the
IO pin drivers are switched off (tristate). Hardware reset and watchdog reset immediately
abort all actions.

The internal reset procedure is executed in several consecutive phases. The order of
these phases depends on the reset source. In general, reset is triggered asynchronously
(external) or synchronously (internal), it is always terminated synchronously.

Table 6-1 Sequence of Reset Phases

Phase | Hardware Reset" Watchdog Reset Software Reset

1 External Reset Phase |------- skipped------- Prereset Phase
Covers the time until the (Shut down)
external trigger is Covers the time until the
removed (RSTIN = 1), running and pending
the device is reset actions of on-chip
asynchronously modules are completed

2 Internal Reset Phase

The appropriate parts of the chip (peripheral system and/or CPU) are in reset
state (except for the reset control block, of course).
The internal reset phase covers the time specified by the reset event timer.

3 Initialization Phase

The appropriate parts of the chip (peripheral system and/or CPU) are set up
according to the default configuration:

* External startup: the default configuration depends on the PORTO settings
* Internal startup: a fixed default configuration is used

* Bootstrap loader: program code is loaded from the external system

4 Operation (Reset phases are terminated)
The user software is executed from now on.

1) A hardware reset must always be asserted while the supply voltages are outside their defined operating
ranges, for example, during Power-On.

User’s Manual 6-2 V2.1, 2004-03
SCU_X41, V2.1

—

Infineon
ec no Ogles/

XC164-16 Derivatives
System Units (Vol. 1 of 2)

General System Control Functions

6.1.1 Reset Sources and Phases

The XC164 executes a reset in several phases whose sequence depends on the reset
trigger (see Table 6-1).

External Reset Phase

A hardware reset is asynchronously triggered when the reset input signal RSTIN is
recognized low. A spike suppression input filter in the RSTIN line suppresses all signals
shorter than 10 ns. To ensure the recognition of the RSTIN signal, it must be held low for
at least 100 ns so it will safely pass the reset input filter. This is also required after the
supply voltages have become stable.

Note: The minimum duration of the external reset must ensure that the hardware
configuration signals have reached their intended logic levels.

RSTOUT
External 7
Hardware _4
VDD
b) Generateiqyyflj{n Reset Reset
7 "> 50-250 kQ s Control
4 h RSTIN Block
/ External _| ¢ N _ _
{ Reset :) PR Spike Filter
\. Sources / T :Ji (10 - 100 ns)
\\\\ ’/// ,I+ \‘
Seee 7 i \
\\I,’, System
- Control
a) Automatic Power-on Reset Unit
MCS05329

Figure 6-1

External Reset Circuitry

A hardware reset on input RSTIN may be triggered in several ways (see Figure 6-1).

An external pull-up device connected to an external capacitor is sufficient for an

automatic power-on reset.

User’s Manual
SCU_X41, V2.1

6-3

V2.1, 2004-03

—

: XC164-16 Derivatives
!nfmegon/ System Units (Vol. 1 of 2)

General System Control Functions

* An external pull-up device connected to an external switch provides a manual reset.
* RSTIN may also be connected to the output of other logic for generating a warm
reset.

Note: During the external reset phase the complete chip is in reset state. The external
reset phase is left synchronously, when the RSTIN level goes inactive (high).

Pre-Reset Phase

The pre-reset phase is triggered by a software reset. During the pre-reset phase, the
CPU first runs its pipeline (including all write back buffers) empty, and then indicates the
software reset request to the system control unit. The pipeline stays empty after this
request trigger is activated.

As soon as the software reset request occurs, the SCU requests a shutdown from the
active modules equipped with shutdown handshake (see Section 6.3.3). The pre-reset
phase is complete as soon as all modules acknowledge the shutdown state.

Upon a shutdown request the EBC will finish the currently running bus cycle.

Internal Reset Phase

At the beginning of the internal reset phase the internal reset condition becomes active,
that means, the internal reset signal is actually applied to the modules. If the reset was
triggered by hardware, it may be active already.

Note: The reset control block (including the watchdog timer) is not reset, of course.

The duration of the internal reset phase is determined by the reset-length-control bitfield
RSTLEN in register RSTCON. The WDT low byte is used for counting the reset duration.
When entering the internal reset phase, the timer is cleared and then counts up with
frequency fypt- The default count frequency after a hardware reset is fyypr = foys/2 =
Jfuc/2. Internal reset triggers do not change the current clock setting and the value of
bitfield WDTIN, so the previously selected f\,p7 is used.

The actual duration of the internal reset sequence can therefore be calculated using the
following formula:

2(RSTLEN)

IpsT = —F— (6.1)
Swot

User’s Manual 6-4 V2.1, 2004-03

SCU_X41, v2.1

—

Infineon XC164-16 Derivatives
echnologies - System Units (Vol. 1 of 2)

General System Control Functions

Reset Termination (Initialization Phase)

When the end of the internal reset phase has been reached, the following actions take
place, before control is passed to the software:

* Set the reset indication flags in register SYSSTAT accordingly
* Select initial configuration and reset start address

¢ Deactivate the internal reset signals

e Execute bootstrap loader if selected

Note: The WDT continues counting up from zero.

User’s Manual 6-5 V2.1, 2004-03
SCU_X41, V2.1

—

: XC164-16 Derivatives
!nfmegon/ System Units (Vol. 1 of 2)

General System Control Functions

6.1.2 Status After Reset

Most units of the XC164 enter a well-defined default status after a reset is completed.
This ensures repeatable start conditions and avoids spurious activities after reset.

Reset Values for the XC164 Registers

During the reset sequence, the registers of the XC164 are preset with a default value