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Attention please!
As far as patents or other rights of third par-
ties are concerned, liability is only assumed 
for components, not for applications, pro-
cesses and circuits implemented within com-
ponents or assemblies.
The information describes the type of compo-
nent and shall not be considered as assured 
characteristics.
Terms of delivery and rights to change design 
reserved.
For questions on technology, delivery and 
prices please contact the Semiconductor 
Group Offices in Germany or the Siemens 
Companies and Representatives worldwide 
(see address list).
Due to technical requirements components 
may contain dangerous substances. For in-
formation on the types in question please 
contact your nearest Siemens Office, Semi-
conductor Group.
Siemens AG is an approved CECC manufac-
turer.
Packing
Please use the recycling operators known to 
you. We can also help you – get in touch with 
your nearest sales office. By agreement we 
will take packing material back, if it is sorted. 
You must bear the costs of transport. 
For packing material that is returned to us un-
sorted or which we are not obliged to accept, 
we shall have to invoice you for any costs in-
curred.
Components used in life-support devices 
or systems must be expressly authorized 
for such purpose!
Critical components1 of the Semiconductor 
Group of Siemens AG, may only be used in 
life-support devices or systems2 with the ex-
press written approval of the Semiconductor 
Group of Siemens AG.
1 A critical component is a component used 

in a life-support device or system whose 
failure can reasonably be expected to 
cause the failure of that life-support de-
vice or system, or to affect its safety or ef-
fectiveness of that device or system.

2 Life support devices or systems are in-
tended (a) to be implanted in the human 
body, or (b) to support and/or maintain 
and sustain human life. If they fail, it is 
reasonable to assume that the health of 
the user may be endangered.
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Introduction
C161RI
1 Introduction

The rapidly growing area of embedded control applications is representing one of the most time-
critical operating environments for today’s microcontrollers. Complex control algorithms have to be
processed based on a large number of digital as well as analog input signals, and the appropriate
output signals must be generated within a defined maximum response time. Embedded control
applications also are often sensitive to board space, power consumption, and overall system cost.

Embedded control applications therefore require microcontrollers, which

● offer a high level of system integration
● eliminate the need for additional peripheral devices and the associated software overhead
● provide system security and fail-safe mechanisms
● provide effective means to control (and reduce) the device’s power consumption.

With the increasing complexity of embedded control applications, a significant increase in CPU
performance and peripheral functionality over conventional 8-bit controllers is required from
microcontrollers for high-end embedded control systems. In order to achieve this high performance
goal Siemens has decided to develop its family of 16-bit CMOS microcontrollers without the
constraints of backward compatibility.

Of course the architecture of the 16-bit microcontroller family pursues successful hardware and
software concepts, which have been established in Siemens' popular 8-bit controller families.

About this Manual

This manual describes the functionality of the 16-bit microcontroller C161RI of the Siemens
C166-family.

The descriptions in this manual refer to the following derivatives:

● C161RI-LM
● C161RI-LF

This manual is valid for the mentioned derivatives. Of course it refers to all devices of the different
available temperature ranges and packages.

For simplicity all these various versions are referred to by the term C161RI throughout this manual.
The complete pro-electron conforming designations are listed in the respective data sheets.
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1.1 The Members of the 16-bit Microcontroller Family

The microcontrollers of the Siemens 16-bit family have been designed to meet the high
performance requirements of real-time embedded control applications. The architecture of this
family has been optimized for high instruction throughput and minimum response time to external
stimuli (interrupts). Intelligent peripheral subsystems have been integrated to reduce the need for
CPU intervention to a minimum extent. This also minimizes the need for communication via the
external bus interface. The high flexibility of this architecture allows to serve the diverse and varying
needs of different application areas such as automotive, industrial control, or data communications.

The core of the 16-bit family has been developed with a modular family concept in mind. All family
members execute an efficient control-optimized instruction set (additional instructions for members
of the second generation). This allows an easy and quick implementation of new family members
with different internal memory sizes and technologies, different sets of on-chip peripherals and/or
different numbers of IO pins.

The XBUS concept opens a straight forward path for the integration of application specific
peripheral modules in addition to the standard on-chip peripherals in order to build application
specific derivatives.

As programs for embedded control applications become larger, high level languages are favoured
by programmers, because high level language programs are easier to write, to debug and to
maintain.

The 80C166-type microcontrollers were the first generation of the 16-bit controller family. These
devices have established the C166 architecture.

The C165-type and C167-type devices are members of the second generation of this family. This
second generation is even more powerful due to additional instructions for HLL support, an
increased address space, increased internal RAM and highly efficient management of various
resources on the external bus.

Enhanced derivatives of this second generation provide additional features like additional internal
high-speed RAM, an integrated CAN-Module, an on-chip PLL, etc.

Utilizing integration to design efficient systems may require the integration of application specific
peripherals to boost system performance, while minimizing the part count. These efforts are
supported by the so-called XBUS, defined for the Siemens 16-bit microcontrollers (second
generation). This XBUS is an internal representation of the external bus interface that opens and
simplifies the integration of peripherals by standardizing the required interface. One representative
taking advantage of this technology is the integrated CAN module.

The C165-type devices are reduced versions of the C167 which provide a smaller package and
reduced power consumption at the expense of the A/D converter, the CAPCOM units and the PWM
module.

The C164-type devices and some of the C161-type devices are further enhanced by a flexible
power management and form the third generation of the 16-bit controller family. This power
management mechanism provides effective means to control the power that is consumed in a
certain state of the controller and thus allows the minimization of the overall power consumption
with respect to a given application.
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A variety of different versions is provided which offer various kinds of on-chip program memory:

● mask-programmable ROM
● Flash memory
● OTP memory
● ROMless with no non-volatile memory at all.

Also there are devices with specific functional units.

The devices may be offered in different packages, temperature ranges and speed classes.

More standard and application-specific derivatives are planned and in development.

Note: Not all derivatives will be offered in any temperature range, speed class, package or program
memory variation.

Information about specific versions and derivatives will be made available with the devices
themselves. Contact your Siemens representative for up-to-date material.

Note: As the architecture and the basic features (i.e. CPU core and built in peripherals) are
identical for most of the currently offered versions of the C161RI, the descriptions within this
manual that refer to the “C161RI” also apply to the other variations, unless otherwise noted.
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1.2 Summary of Basic Features

The C161RI is an improved representative of the Siemens family of full featured 16-bit single-chip
CMOS microcontrollers. It combines high CPU performance (up to 10 million instructions per
second) with high peripheral functionality and means for power reduction.
Several key features contribute to the high performance of the C161RI (the indicated timings refer
to a CPU clock of 20 MHz).

High Performance 16-Bit CPU With Four-Stage Pipeline

• 100 ns minimum instruction cycle time, with most instructions executed in 1 cycle
• 500 ns multiplication (16-bit × 16-bit), 1 µs division (32-bit/16-bit)
• Multiple high bandwidth internal data buses
• Register based design with multiple variable register banks
• Single cycle context switching support
• 16 MBytes linear address space for code and data (von Neumann architecture)
• System stack cache support with automatic stack overflow/underflow detection

Control Oriented Instruction Set with High Efficiency

• Bit, byte, and word data types
• Flexible and efficient addressing modes for high code density
• Enhanced boolean bit manipulation with direct addressability of 6 Kbits

for peripheral control and user defined flags
• Hardware traps to identify exception conditions during runtime
• HLL support for semaphore operations and efficient data access

Integrated On-chip Memory

• 1 KByte internal RAM for variables, register banks, system stack and code
• 2 KByte on-chip high-speed XRAM for variables, user stack and code

External Bus Interface

• Multiplexed or demultiplexed bus configurations
• Segmentation capability and chip select signal generation
• 8-bit or 16-bit data bus
• Bus cycle characteristics selectable for five programmable address areas

16-Priority-Level Interrupt System

• 27 interrupt nodes with separate interrupt vectors
• 300/500 ns typical/maximum interrupt latency in case of internal program execution
• Fast external interrupts
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8-Channel Peripheral Event Controller (PEC)

• Interrupt driven single cycle data transfer
• Transfer count option (standard CPU interrupt after a programmable

number of PEC transfers)
• Eliminates overhead of saving and restoring system state for interrupt requests

Intelligent On-chip Peripheral Subsystems

• 4-Channel 8-bit A/D Converter with programmable conversion time
(7.625 µs minimum), auto scan modes, channel injection mode

• 2 Multifunctional General Purpose Timer Units
GPT1: three 16-bit timers/ counters, maximum resolution fCPU/8
GPT2: two 16-bit timers/counters, maximum resolution fCPU/4

• Asynchronous/Synchronous Serial Channel (USART)
with baud rate generator, parity, framing, and overrun error detection

• High Speed Synchronous Serial Channel
programmable data length and shift direction

• I2C-Bus Module with 10-bit addressing and 400 Kbit/sec
• Real Time Clock
• Watchdog Timer with programmable time intervals
• Bootstrap Loader for flexible system initialization

76 IO Lines With Individual Bit Addressability

• Tri-stated in input mode
• Push/pull or open drain output mode

Different Temperature Ranges

• 0 to + 70 °C,  – 40 to + 85 °C

Siemens CMOS Process

• Low Power CMOS Technology, including power saving Idle and Power Down modes

100-Pin Plastic Quad Flat Pack (PQFP) Packages

• P-MQFP, 14 × 20 mm body, 0.65 mm (25.6 mil) lead spacing, surface mount technology
• P-TQFP, 14 × 14 mm body, 0.5 mm (19.7 mil) lead spacing, surface mount technology
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Complete Development Support   

For the development tool support of its microcontrollers, Siemens follows a clear third party
concept. Currently around 120 tool suppliers world-wide, ranging from local niche manufacturers to
multinational companies with broad product portfolios, offer powerful development tools for the
Siemens C500 and C166 microcontroller families, guaranteeing a remarkable variety of price-
performance classes as well as early availability of high quality key tools such as compilers,
assemblers, simulators, debuggers or in-circuit emulators.

Siemens incorporates its strategic tool partners very early into the product development process,
making sure embedded system developers get reliable, well-tuned tool solutions, which help them
unleash the power of Siemens microcontrollers in the most effective way and with the shortest
possible learning curve.

The tool environment for the Siemens 16-bit microcontrollers includes the following tools:

● Compilers (C, MODULA2, FORTH)
● Macro-Assemblers, Linkers, Locaters, Library Managers, Format-Converters
● Architectural Simulators
● HLL debuggers
● Real-Time operating systems
● VHDL chip models
● In-Circuit Emulators (based on bondout or standard chips)
● Plug-In emulators
● Emulation and Clip-Over adapters, production sockets
● Logic Analyzer disassemblers
● Starter Kits
● Evaluation Boards with monitor programs
● Industrial boards (also for CAN, FUZZY, PROFIBUS, FORTH applications)
● Network driver software (CAN, PROFIBUS)
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1.3 Abbreviations  

The following acronyms and termini are used within this document:

ADC  . . . . . . . . . Analog Digital Converter

ALE . . . . . . . . . . Address Latch Enable

ALU. . . . . . . . . . Arithmetic and Logic Unit

ASC  . . . . . . . . . Asynchronous/synchronous Serial Controller

CISC . . . . . . . . . Complex Instruction Set Computing

CMOS . . . . . . . . Complementary Metal Oxide Silicon

CPU  . . . . . . . . . Central Processing Unit

EBC  . . . . . . . . . External Bus Controller

ESFR  . . . . . . . . Extended Special Function Register

Flash . . . . . . . . . Non-volatile memory that may be electrically erased

GPR  . . . . . . . . . General Purpose Register

GPT  . . . . . . . . . General Purpose Timer unit

HLL . . . . . . . . . . High Level Language

I2C . . . . . . . . . . . Inter Integrated Circuit (Bus)

IO  . . . . . . . . . . . Input / Output

OTP  . . . . . . . . . One Time Programmable memory

PEC  . . . . . . . . . Peripheral Event Controller

PLA . . . . . . . . . . Programmable Logic Array

PLL . . . . . . . . . . Phase Locked Loop

PWM . . . . . . . . . Pulse Width Modulation

RAM . . . . . . . . . Random Access Memory

RISC . . . . . . . . . Reduced Instruction Set Computing

ROM . . . . . . . . . Read Only Memory

SDD  . . . . . . . . . Slow Down Divider

SFR. . . . . . . . . . Special Function Register

SSC  . . . . . . . . . Synchronous Serial Controller

XBUS  . . . . . . . . Internal representation of the External Bus
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2 Architectural Overview

The architecture of the C161RI combines the advantages of both RISC and CISC processors in a
very well-balanced way. The sum of the features which are combined result in a high performance
microcontroller, which is the right choice not only for today’s applications, but also for future
engineering challenges. The C161RI not only integrates a powerful CPU core and a set of
peripheral units into one chip, but also connects the units in a very efficient way. One of the four
buses used concurrently on the C161RI is the XBUS, an internal representation of the external bus
interface. This bus provides a standardized method of integrating application-specific peripherals to
produce derivates of the standard C161RI.

   

Figure 2-1
C161RI Functional Block Diagram
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2.1 Basic CPU Concepts and Optimizations   

The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic and logic unit
(ALU) and dedicated SFRs. Additional hardware is provided for a separate multiply and divide unit,
a bit-mask generator and a barrel shifter.

     

Figure 2-2
CPU Block Diagram
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High Instruction Bandwidth / Fast Execution

Based on the hardware provisions, most of the C161RI’s instructions can be executed in just one
machine cycle, which requires 2 CPU clock cycles (2 × 1/fCPU = 4 TCL). For example, shift and
rotate instructions are always processed within one machine cycle, independent of the number of
bits to be shifted.

Branch-, multiply- and divide instructions normally take more than one machine cycle. These
instructions, however, have also been optimized. For example, branch instructions only require an
additional machine cycle, when a branch is taken, and most branches taken in loops require no
additional machine cycles at all, due to the so-called ‘Jump Cache’.
A 32-bit / 16-bit division takes 20 CPU clock cycles, a 16-bit × 16-bit multiplication takes 10 CPU
clock cycles.

The instruction cycle time has been dramatically reduced through the use of instruction pipelining.
This technique allows the core CPU to process portions of multiple sequential instruction stages in
parallel. The following four stage pipeline provides the optimum balancing for the CPU core:

FETCH: In this stage, an instruction is fetched from the internal ROM or RAM or from the external
memory, based on the current IP value.

DECODE: In this stage, the previously fetched instruction is decoded and the required operands
are fetched.

EXECUTE: In this stage, the specified operation is performed on the previously fetched operands.

WRITE BACK: In this stage, the result is written to the specified location.

If this technique were not used, each instruction would require four machine cycles. This increased
performance allows a greater number of tasks and interrupts to be processed.

Instruction Decoder

Instruction decoding is primarily generated from PLA outputs based on the selected opcode. No
microcode is used and each pipeline stage receives control signals staged in control registers from
the decode stage PLAs. Pipeline holds are primarily caused by wait states for external memory
accesses and cause the holding of signals in the control registers. Multiple-cycle instructions are
performed through instruction injection and simple internal state machines which modify required
control signals.

High Function 8-bit and 16-bit Arithmetic and Logic Unit

All standard arithmetic and logical operations are performed in a 16-bit ALU. In addition, for byte
operations, signals are provided from bits six and seven of the ALU result to correctly set the
condition flags. Multiple precision arithmetic is provided through a 'CARRY-IN' signal to the ALU
from previously calculated portions of the desired operation. Most internal execution blocks have
been optimized to perform operations on either 8-bit or 16-bit quantities. Once the pipeline has been
filled, one instruction is completed per machine cycle, except for multiply and divide. An advanced
Booth algorithm has been incorporated to allow four bits to be multiplied and two bits to be divided
per machine cycle. Thus, these operations use two coupled 16-bit registers, MDL and MDH, and
require four and nine machine cycles, respectively, to perform a 16-bit by 16-bit (or 32-bit by 16-bit)
calculation plus one machine cycle to setup and adjust the operands and the result. Even these
longer multiply and divide instructions can be interrupted during their execution to allow for very fast
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interrupt response. Instructions have also been provided to allow byte packing in memory while
providing sign extension of bytes for word wide arithmetic operations. The internal bus structure
also allows transfers of bytes or words to or from peripherals based on the peripheral requirements.

A set of consistent flags is automatically updated in the PSW after each arithmetic, logical, shift, or
movement operation. These flags allow branching on specific conditions. Support for both signed
and unsigned arithmetic is provided through user-specifiable branch tests. These flags are also
preserved automatically by the CPU upon entry into an interrupt or trap routine.
All targets for branch calculations are also computed in the central ALU.

A 16-bit barrel shifter provides multiple bit shifts in a single cycle. Rotates and arithmetic shifts are
also supported.

Extended Bit Processing and Peripheral Control

A large number of instructions has been dedicated to bit processing. These instructions provide
efficient control and testing of peripherals while enhancing data manipulation. Unlike other
microcontrollers, these instructions provide direct access to two operands in the bit-addressable
space without requiring to move them into temporary flags.

The same logical instructions available for words and bytes are also supported for bits. This allows
the user to compare and modify a control bit for a peripheral in one instruction. Multiple bit shift
instructions have been included to avoid long instruction streams of single bit shift operations.
These are also performed in a single machine cycle.

In addition, bit field instructions have been provided, which allow the modification of multiple bits
from one operand in a single instruction.

High Performance Branch-, Call-, and Loop Processing

Due to the high percentage of branching in controller applications, branch instructions have been
optimized to require one extra machine cycle only when a branch is taken. This is implemented by
precalculating the target address while decoding the instruction. To decrease loop execution
overhead, three enhancements have been provided:

• The first solution provides single cycle branch execution after the first iteration of a loop. Thus,
only one machine cycle is lost during the execution of the entire loop. In loops which fall through
upon completion, no machine cycles are lost when exiting the loop. No special instructions are
required to perform loops, and loops are automatically detected during execution of branch
instructions.

• The second loop enhancement allows the detection of the end of a table and avoids the use of
two compare instructions embedded in loops. One simply places the lowest negative number at
the end of the specific table, and specifies branching if neither this value nor the compared value
have been found. Otherwise the loop is terminated if either condition has been met. The
terminating condition can then be tested.

• The third loop enhancement provides a more flexible solution than the Decrement and Skip on
Zero instruction which is found in other microcontrollers. Through the use of Compare and
Increment or Decrement instructions, the user can make comparisons to any value. This allows
loop counters to cover any range. This is particularly advantageous in table searching.
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Saving of system state is automatically performed on the internal system stack avoiding the use of
instructions to preserve state upon entry and exit of interrupt or trap routines. Call instructions push
the value of the IP on the system stack, and require the same execution time as branch instructions.

Instructions have also been provided to support indirect branch and call instructions. This supports
implementation of multiple CASE statement branching in assembler macros and high level
languages.

Consistent and Optimized Instruction Formats

To obtain optimum performance in a pipelined design, an instruction set has been designed which
incorporates concepts from Reduced Instruction Set Computing (RISC). These concepts primarily
allow fast decoding of the instructions and operands while reducing pipeline holds. These concepts,
however, do not preclude the use of complex instructions, which are required by microcontroller
users. The following goals were used to design the instruction set:

1) Provide powerful instructions to perform operations which currently require sequences of 
instructions and are frequently used. Avoid transfer into and out of temporary registers such 
as accumulators and carry bits. Perform tasks in parallel such as saving state upon entry into 
interrupt routines or subroutines.

2) Avoid complex encoding schemes by placing operands in consistent fields for each instruc-
tion. Also avoid complex addressing modes which are not frequently used. This decreases 
the instruction decode time while also simplifying the development of compilers and assem-
blers.

3) Provide most frequently used instructions with one-word instruction formats. All other instruc-
tions are placed into two-word formats. This allows all instructions to be placed on word 
boundaries, which alleviates the need for complex alignment hardware. It also has the bene-
fit of increasing the range for relative branching instructions.

The high performance offered by the hardware implementation of the CPU can efficiently be utilized
by a programmer via the highly functional C161RI instruction set which includes the following
instruction classes:

• Arithmetic Instructions
• Logical Instructions
• Boolean Bit Manipulation Instructions
• Compare and Loop Control Instructions
• Shift and Rotate Instructions
• Prioritize Instruction
• Data Movement Instructions
• System Stack Instructions
• Jump and Call Instructions
• Return Instructions
• System Control Instructions
• Miscellaneous Instructions

Possible operand types are bits, bytes and words. Specific instruction support the conversion
(extension) of bytes to words. A variety of direct, indirect or immediate addressing modes are
provided to specify the required operands.
Semiconductor Group 2-5 1998-05-01



Architectural Overview
C161RI
Programmable Multiple Priority Interrupt System  

The following enhancements have been included to allow processing of a large number of interrupt
sources:

1) Peripheral Event Controller (PEC): This processor is used to off-load many interrupt requests 
from the CPU. It avoids the overhead of entering and exiting interrupt or trap routines by per-
forming single-cycle interrupt-driven byte or word data transfers between any two locations in 
segment 0 with an optional increment of either the PEC source or the destination pointer. 
Just one cycle is ’stolen’ from the current CPU activity to perform a PEC service.

2) Multiple Priority Interrupt Controller: This controller allows all interrupts to be placed at any 
specified priority. Interrupts may also be grouped, which provides the user with the ability to 
prevent similar priority tasks from interrupting each other. For each of the possible interrupt 
sources there is a separate control register, which contains an interrupt request flag, an inter-
rupt enable flag and an interrupt priority bitfield. Once having been accepted by the CPU, an 
interrupt service can only be interrupted by a higher prioritized service request. For standard 
interrupt processing, each of the possible interrupt sources has a dedicated vector location.

3) Multiple Register Banks: This feature allows the user to specify up to sixteen general pur-
pose registers located anywhere in the internal RAM. A single one-machine-cycle instruction 
allows to switch register banks from one task to another.

4) Interruptable Multiple Cycle Instructions: Reduced interrupt latency is provided by allowing 
multiple-cycle instructions (multiply, divide) to be interruptable.

With an interrupt response time within a range from just 5 to 10 CPU clock cycles (in case of internal
program execution), the C161RI is capable of reacting very fast on non-deterministic events.

Its fast external interrupt inputs are sampled every CPU clock cycle and allow to recognize even
very short external signals.

The C161RI also provides an excellent mechanism to identify and to process exceptions or error
conditions that arise during run-time, so called ’Hardware Traps’. Hardware traps cause an
immediate non-maskable system reaction which is similiar to a standard interrupt service
(branching to a dedicated vector table location). The occurrence of a hardware trap is additionally
signified by an individual bit in the trap flag register (TFR). Except for another higher prioritized trap
service being in progress, a hardware trap will interrupt any current program execution. In turn,
hardware trap services can normally not be interrupted by standard or PEC interrupts.

Software interrupts are supported by means of the ’TRAP’ instruction in combination with an
individual trap (interrupt) number.
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2.2 The On-chip System Resources

The C161RI controllers provide a number of powerful system resources designed around the CPU.
The combination of CPU and these resources results in the high performance of the members of
this controller family.

Peripheral Event Controller (PEC) and Interrupt Control   

The Peripheral Event Controller allows to respond to an interrupt request with a single data transfer
(word or byte) which only consumes one instruction cycle and does not require to save and restore
the machine status. Each interrupt source is prioritized every machine cycle in the interrupt control
block. If PEC service is selected, a PEC transfer is started. If CPU interrupt service is requested, the
current CPU priority level stored in the PSW register is tested to determine whether a higher priority
interrupt is currently being serviced. When an interrupt is acknowledged, the current state of the
machine is saved on the internal system stack and the CPU branches to the system specific vector
for the peripheral.

The PEC contains a set of SFRs which store the count value and control bits for eight data transfer
channels. In addition, the PEC uses a dedicated area of RAM which contains the source and
destination addresses. The PEC is controlled similar to any other peripheral through SFRs
containing the desired configuration of each channel.

An individual PEC transfer counter is implicitly decremented for each PEC service except forming
in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed
to the vector location related to the corresponding source. PEC services are very well suited, for
example, to move register contents to/from a memory table. The C161RI has 8 PEC channels each
of which offers such fast interrupt-driven data transfer capabilities.

Memory Areas   

The memory space of the C161RI is configured in a Von Neumann architecture which means that
code memory, data memory, registers and IO ports are organized within the same linear address
space which covers up to 16 MBytes. The entire memory space can be accessed bytewise or
wordwise. Particular portions of the on-chip memory have additionally been made directly bit
addressable.

A 1 KByte 16-bit wide internal RAM provides fast access to General Purpose Registers (GPRs),
user data (variables) and system stack. The internal RAM may also be used for code. A unique
decoding scheme provides flexible user register banks in the internal memory while optimizing the
remaining RAM for user data.

The CPU disposes of an actual register context consisting of up to 16 wordwide and/or bytewide
GPRs, which are physically located within the on-chip RAM area. A Context Pointer (CP) register
determines the base address of the active register bank to be accessed by the CPU at a time. The
number of register banks is only restricted by the available internal RAM space. For easy parameter
passing, a register bank may overlap others.

A system stack of up to 512 words is provided as a storage for temporary data. The system stack
is also located within the on-chip RAM area, and it is accessed by the CPU via the stack pointer (SP)
register. Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack
pointer value upon each stack access for the detection of a stack overflow or underflow.
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Hardware detection of the selected memory space is placed at the internal memory decoders and
allows the user to specify any address directly or indirectly and obtain the desired data without using
temporary registers or special instructions.

A 2 KByte 16-bit wide on-chip XRAM provides fast access to user data (variables), user stacks
and code. The on-chip XRAM is realized as an X-Peripheral and appears to the software as an
external RAM. Therefore it cannot store register banks and is not bitaddressable. The XRAM allows
16-bit accesses with maximum speed.

For Special Function Registers 1024 Bytes of the address space are reserved. The standard
Special Function Register area (SFR) uses 512 bytes, while the Extended Special Function
Register area (ESFR) uses the other 512 bytes. (E)SFRs are wordwide registers which are used for
controlling and monitoring functions of the different on-chip units. Unused (E)SFR addresses are
reserved for future members of the C166 family with enhanced functionality.

External Bus Interface   

In order to meet the needs of designs where more memory is required than is provided on chip, up
to 8 MBytes of external RAM and/or ROM can be connected to the microcontroller via its external
bus interface. The integrated External Bus Controller (EBC) allows to access external memory and/
or peripheral resources in a very flexible way. For up to five address areas the bus mode
(multiplexed / demultiplexed), the data bus width (8-bit/16-bit) and even the length of a bus cycle
(waitstates, signal delays) can be selected independently. This allows to access a variety of
memory and peripheral components directly and with maximum efficiency. If the device does not
run in Single Chip Mode, where no external memory is required, the EBC can control external
accesses in one of the following external access modes:

• 16-/18-/20-/23-bit Addresses, 16-bit Data, Demultiplexed
• 16-/18-/20-/23-bit Addresses, 8-bit Data, Demultiplexed
• 16-/18-/20-/23-bit Addresses, 16-bit Data, Multiplexed
• 16-/18-/20-/23-bit Addresses, 8-bit Data, Multiplexed

The demultiplexed bus modes use PORT1 for addresses and PORT0 for data input/output. The
multiplexed bus modes use PORT0 for both addresses and data input/output. Port 4 is used for the
upper address lines (A16 …) if selected.

Important timing characteristics of the external bus interface (waitstates, ALE length and Read/
Write Delay) have been made programmable to allow the user the adaption of a wide range of
different types of memories and/or peripherals. Access to very slow memories or peripherals is
supported via a particular ’Ready’ function.

For applications which require less than 64 KBytes of address space, a non-segmented memory
model can be selected, where all locations can be addressed by 16 bits, and thus Port 4 is not
needed as an output for the upper address bits (Axx … A16), as is the case when using the
segmented memory model.

The on-chip XBUS  is an internal representation of the external bus and allows to access integrated
application-specific peripherals/modules in the same way as external components. It provides a
defined interface for these customized peripherals.

The on-chip XRAM and the on-chip I2C-Module are examples for these X-Peripherals.
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2.3 The On-chip Peripheral Blocks   

The C166 family clearly separates peripherals from the core. This structure permits the maximum
number of operations to be performed in parallel and allows peripherals to be added or deleted from
family members without modifications to the core. Each functional block processes data
independently and communicates information over common buses. Peripherals are controlled by
data written to the respective Special Function Registers (SFRs). These SFRs are located either
within the standard SFR area (00’FE00H … 00’FFFFH) or within the extended ESFR area
(00’F000H … 00’F1FFH).

These built in peripherals either allow the CPU to interface with the external world, or provide
functions on-chip that otherwise were to be added externally in the respective system. 

The C161RI generic peripherals are:

• Two General Purpose Timer Blocks (GPT1 and GPT2)
• Two Serial Interfaces (ASC0 and SSC)
• A Watchdog Timer
• An 8-bit Analog / Digital Converter
• A Real Time Clock
• Seven IO ports with a total of 76 IO lines

Each peripheral also contains a set of Special Function Registers (SFRs), which control the
functionality of the peripheral and temporarily store intermediate data results. Each peripheral has
an associated set of status flags. Individually selected clock signals are generated for each
peripheral from binary multiples of the CPU clock.

Peripheral Interfaces

The on-chip peripherals generally have two different types of interfaces, an interface to the CPU
and an interface to external hardware. Communication between CPU and peripherals is performed
through Special Function Registers (SFRs) and interrupts. The SFRs serve as control/status and
data registers for the peripherals. Interrupt requests are generated by the peripherals based on
specific events which occur during their operation (e.g. operation complete, error, etc.).

For interfacing with external hardware, specific pins of the parallel ports are used, when an input or
output function has been selected for a peripheral. During this time, the port pins are controlled by
the peripheral (when used as outputs) or by the external hardware which controls the peripheral
(when used as inputs). This is called the 'alternate (input or output) function' of a port pin, in contrast
to its function as a general purpose IO pin.

Peripheral Timing

Internal operation of CPU and peripherals is based on the CPU clock (fCPU). The on-chip oscillator
derives the CPU clock from the crystal or from the external clock signal. The clock signal which is
gated to the peripherals is independent from the clock signal which feeds the CPU. During Idle
mode the CPU’s clock is stopped while the peripherals continue their operation. Peripheral SFRs
may be accessed by the CPU once per state. When an SFR is written to by software in the same
state where it is also to be modified by the peripheral, the software write operation has priority.
Further details on peripheral timing are included in the specific sections about each peripheral.
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Programming Hints

Access to SFRs
All SFRs reside in data page 3 of the memory space. The following addressing mechanisms allow
to access the SFRs:

• indirect or direct addressing with 16-bit (mem) addresses must guarantee that the used data
page pointer (DPP0 … DPP3) selects data page 3.

• accesses via the Peripheral Event Controller (PEC) use the SRCPx and DSTPx pointers instead
of the data page pointers.

• short 8-bit (reg) addresses to the standard SFR area do not use the data page pointers but
directly access the registers within this 512 Byte area.

• short 8-bit (reg) addresses to the extended ESFR area require switching to the 512 Byte
extended SFR area. This is done via the EXTension instructions EXTR, EXTP(R), EXTS(R).

Byte write operations to word wide SFRs via indirect or direct 16-bit (mem) addressing or byte
transfers via the PEC force zeros in the non-addressed byte. Byte write operations via short 8-bit
(reg) addressing can only access the low byte of an SFR and force zeros in the high byte. It is
therefore recommended, to use the bit field instructions (BFLDL and BFLDH) to write to any number
of bits in either byte of an SFR without disturbing the non-addressed byte and the unselected bits.

Reserved Bits
Some of the bits which are contained in the C161RI's SFRs are marked as 'Reserved'. User
software should never write '1's to reserved bits. These bits are currently not implemented and may
be used in future products to invoke new functions. In this case, the active state for these functions
will be '1', and the inactive state will be '0'. Therefore writing only ‘0’s to reserved locations provides
portability of the current software to future devices. After read accesses reserved bits should be
ignored or masked out.

Parallel Ports   

The C161RI provides up to 76 IO lines which are organized into six input/output ports and one input
port. All port lines are bit-addressable, and all input/output lines are individually (bit-wise)
programmable as inputs or outputs via direction registers. The IO ports are true bidirectional ports
which are switched to high impedance state when configured as inputs. The output drivers of three
IO ports can be configured (pin by pin) for push/pull operation or open-drain operation via control
registers. During the internal reset, all port pins are configured as inputs.

All port lines have programmable alternate input or output functions associated with them. PORT0
and PORT1 may be used as address and data lines when accessing external memory, while Port 4
outputs the additional segment address bits A22/19/17 … A16 in systems where segmentation is
used to access more than 64 KBytes of memory. Port 6 provides I2C Bus lines and the chip select
signals CS4 … CS0. Port 2 accepts the fast external interrupt inputs. Port 3 includes alternate
functions of timers, serial interfaces, the optional bus control signal BHE and the system clock
output (CLKOUT). Port 5 is used for timer control signals and for the analog inputs to the A/D
Converter. All port lines that are not used for these alternate functions may be used as general
purpose IO lines.
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Serial Channels   

Serial communication with other microcontrollers, processors, terminals or external peripheral
components is provided by two serial interfaces with different functionality, an Asynchronous/
Synchronous Serial Channel (ASC0) and a High-Speed Synchronous Serial Channel (SSC).

The ASC0 is upward compatible with the serial ports of the Siemens 8-bit microcontroller families
and supports full-duplex asynchronous communication at up to 500 KBaud and half-duplex
synchronous communication at up to 2 MBaud @ 16 MHz CPU clock.
A dedicated baud rate generator allows to set up all standard baud rates without oscillator tuning.
For transmission, reception and error handling 4 separate interrupt vectors are provided. In
asynchronous mode, 8- or 9-bit data frames are transmitted or received, preceded by a start bit and
terminated by one or two stop bits. For multiprocessor communication, a mechanism to distinguish
address from data bytes has been included (8-bit data plus wake up bit mode).
In synchronous mode, the ASC0 transmits or receives bytes (8 bits) synchronously to a shift clock
which is generated by the ASC0. The ASC0 always shifts the LSB first. A loop back option is
available for testing purposes.
A number of optional hardware error detection capabilities has been included to increase the
reliability of data transfers. A parity bit can automatically be generated on transmission or be
checked on reception. Framing error detection allows to recognize data frames with missing stop
bits. An overrun error will be generated, if the last character received has not been read out of the
receive buffer register at the time the reception of a new character is complete.

The SSC supports full-duplex synchronous communication at up to 4 Mbaud @ 16 MHz CPU clock.
It may be configured so it interfaces with serially linked peripheral components. A dedicated baud
rate generator allows to set up all standard baud rates without oscillator tuning. For transmission,
reception and error handling 3 separate interrupt vectors are provided.
The SSC transmits or receives characters of 2 … 16 bits length synchronously to a shift clock which
can be generated by the SSC (master mode) or by an external master (slave mode). The SSC can
start shifting with the LSB or with the MSB and allows the selection of shifting and latching clock
edges as well as the clock polarity.
A number of optional hardware error detection capabilities has been included to increase the
reliability of data transfers. Transmit and receive error supervise the correct handling of the data
buffer. Phase and baudrate error detect incorrect serial data.

The On-chip I2C Bus Module   

The integrated I2C Module handles the transmission and reception of frames over the two-line I2C
bus in accordance with the I2C Bus specification. The on-chip I2C Module can receive and transmit
data using 7-bit or 10-bit addressing and it can operate in slave mode, in master mode or in multi-
master mode.

Several physical interfaces (port pins) can be established under software control. Data can be
transferred at speeds up to 400 Kbit/sec.

Two interrupt nodes dedicated to the I2C module allow efficient interrupt service and also support
operation via PEC transfers.

Note: The port pins associated with the I2C interfaces feature open drain drivers only, as required
by the I2C specification.
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General Purpose Timer (GPT) Unit   

The GPT units represent a very flexible multifunctional timer/counter structure which may be used
for many different time related tasks such as event timing and counting, pulse width and duty cycle
measurements, pulse generation, or pulse multiplication.

Each timer may operate independently in a number of different modes, or may be concatenated
with another timer of the same module.

Each timer can be configured individually for one of four basic modes of operation, which are Timer,
Gated Timer, Counter Mode and Incremental Interface Mode (GPT1 timers). In Timer Mode the
input clock for a timer is derived from the internal CPU clock divided by a programmable prescaler,
while Counter Mode allows a timer to be clocked in reference to external events (via TxIN).
Pulse width or duty cycle measurement is supported in Gated Timer Mode where the operation of
a timer is controlled by the ‘gate’ level on its external input pin TxIN.
In Incremental Interface Mode the GPT1 timers can be directly connected to the incremental
position sensor signals A and B via the respective inputs TxIN and TxEUD. Direction and count
signals are internally derived from these two input signals, so the contents of timer Tx corresponds
to the sensor position. The third position sensor signal TOP0 can be connected to an interrupt input.

The count direction (up/down) for each timer is programmable by software or may additionally be
altered dynamically by an external signal (TxEUD) to facilitate e.g. position tracking.

The core timers T3 and T6 have output toggle latches (TxOTL) which change their state on each
timer over-flow/underflow. The state of these latches may be used internally to concatenate the core
timers with the respective auxiliary timers resulting in 32/33-bit timers/counters for measuring long
time periods with high resolution.

Various reload or capture functions can be selected to reload timers or capture a timer’s contents
triggered by an external signal or a selectable transition of toggle latch TxOTL.

The maximum resolution of the timers in module GPT1 is 8 CPU clock cycles (= 16 TCL). With their
maximum resolution of 4 CPU clock cycles (= 8 TCL) the GPT2 timers provide precise event control
and time measurement.

Watchdog Timer   

The Watchdog Timer represents one of the fail-safe mechanisms which have been implemented to
prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after a reset of the chip, and can only be disabled in the time
interval until the EINIT (end of initialization) instruction has been executed. Thus, the chip’s start-up
procedure is always monitored. The software has to be designed to service the Watchdog Timer
before it overflows. If, due to hardware or software related failures, the software fails to do so, the
Watchdog Timer overflows and generates an internal hardware reset and pulls the RSTOUT pin low
in order to allow external hardware components to reset.

The Watchdog Timer is a 16-bit timer, clocked with the CPU clock divided either by 2 or by 128. The
high byte of the Watchdog Timer register can be set to a prespecified reload value (stored in
WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced
by the application software, the high byte of the Watchdog Timer is reloaded. Thus, time intervals
between 31 µs and 525 ms can be monitored (@ 16 MHz). The default Watchdog Timer interval
after reset is 8.19 ms (@ 16 MHz).
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A/D Converter   

For analog signal measurement, an 8-bit A/D converter with 4 multiplexed input channels and a
sample and hold circuit has been integrated on-chip. It uses the method of successive
approximation. The sample time (for loading the capacitors) and the conversion time is
programmable and can so be adjusted to the external circuitry.

Overrun error detection is provided for the conversion result register (ADDAT): an interrupt request
will be generated when the result of a previous conversion has not been read from the result register
at the time the next conversion is complete.

For applications which require less analog input channels, the remaining channel inputs can be
used as digital input port pins.

The A/D converter of the C161RI supports two different conversion modes. In the standard Single
Channel conversion mode, the analog level on a specified channel is sampled once and converted
to a digital result. In the Single Channel Continuous mode, the analog level on a specified channel
is repeatedly sampled and converted without software intervention.

The Peripheral Event Controller (PEC) may be used to automatically store the conversion results
into a table in memory for later evaluation, without requiring the overhead of entering and exiting
interrupt routines for each data transfer.

Real Time Clock   

The C161RI contains a real time clock (RTC) which serves for different purposes:

• System clock to determine the current time and date,
even during idle mode and power down mode (optionally)

• Cyclic time based interrupt, e.g. to provide a system time tick independent of the CPU frequency
without loading the general purpose timers, or to wake up regularly from idle mode.

• 48-bit timer for long term measurements,
the maximum usable timespan is more than 100 years.

The RTC module consists of a chain of 3 divider blocks, a fixed 8:1 divider, the reloadable 16-bit
timer T14 and the 32-bit RTC timer (accessible via registers RTCH and RTCL). Both timers count
up.
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2.4 Power Management Features   

The known basic power reduction modes (Idle and Power Down) are enhanced by a number of
additional power management features (see below). These features can be combined to reduce the
controller’s power consumption to the respective application’s possible minimum.

• Flexible clock generation
• Flexible peripheral management (peripherals can be enabled/disabled separately or in groups)
• Periodic wakeup from Idle mode via RTC timer

The listed features provide effective means to realize standby conditions for the system with an
optimum balance between power reduction (i.e. standby time) and peripheral operation (i.e. system
functionality).

Flexible Clock Generation

The flexible clock generation system combines a variety of improved mechanisms (partly user
controllable) to provide the C161RI modules with clock signals. This is especially important in power
sensitive modes like standby operation.

The power optimized oscillator generally reduces the amount of power which is consumed in
order to generate the clock signal within the C161RI.

The clock system efficiently controls the amount of power which is consumed in order to distribute
the clock signal within the C161RI.

Slowdown operation is achieved by dividing the oscillator clock by a programmable factor
(1 … 32) resulting in a low frequency device operation which significantly reduces the overall power
consumption.

Flexible Peripheral Management

The flexible peripheral management provides a mechanism to enable and disable each peripheral
module separately. In each situation (e.g. several system operating modes, standby, etc.) only
those peripherals may be kept running which are required for the respective functionality. All others
can be switched off. It also allows the operation control of whole groups of peripherals including the
power required for generating and distributing their clock input signal. Other peripherals may remain
active, e.g. in order to maintain communication channels. The registers of separately disabled
peripherals (not within a disabled group) can still be accessed.

Periodic wakeup from Idle Mode

Periodic wakeup from Idle mode combines the drastically reduced power consumption in Idle mode
(in conjunction with the additional power management features) with a high level of system
availability. External signals and events can be scanned (at a lower rate) by periodically activating
the CPU and selected peripherals which then return to powersave mode after a short time. This
greatly reduces the system’s average power consumption.
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2.5 Protected Bits

The C161RI provides a special mechanism to protect bits which can be modified by the on-chip
hardware from being changed unintentionally by software accesses to related bits (see also chapter
“The Central Processing Unit”).  

The following bits are protected:  

Σ = 44 protected bits.

Register Bit Name Notes

T2IC, T3IC, T4IC T2IR, T3IR, T4IR GPT1 timer interrupt request flags

T5IC, T6IC T5IR, T6IR GPT2 timer interrupt request flags

CRIC CRIR GPT2 CAPREL interrupt request flag

T3CON, T6CON T3OTL, T6OTL GPTx timer output toggle latches

S0TIC, S0TBIC S0TIR, S0TBIR ASC0 transmit(buffer) interrupt request flags

S0RIC, S0EIC S0RIR, S0EIR ASC0 receive/error interrupt request flags

S0CON S0REN ASC0 receiver enable flag

SSCTIC, SSCRIC SSCTIR, SSCRIR SSC transmit/receive interrupt request flags

SSCEIC SSCEIR SSC error interrupt request flag

SSCCON SSCBSY SSC busy flag

SSCCON SSCBE, SSCPE SSC error flags

SSCCON SSCRE, SSCTE SSC error flags

ADCIC, ADEIC ADCIR, ADEIR ADC end-of-conv./overrun intr. request flag

ADCON ADST ADC start flag request flag

CC15IC … CC8IC CC15IR … CC8IR Fast external interrupt request flags

TFR TFR.15,14,13 Class A trap flags

TFR TFR.7,3,2,1,0 Class B trap flags

XP3IC … XP0IC XP3IR … XP0IC X-Peripheral interrupt request flags
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3 Memory Organization

The memory space of the C161RI is configured in a “Von Neumann” architecture. This means that
code and data are accessed within the same linear address space. All of the physically separated
memory areas, including internal ROM/Flash/OTP (where integrated), internal RAM, the internal
Special Function Register Areas (SFRs and ESFRs), the address areas for integrated XBUS
peripherals and external memory are mapped into one common address space.

The C161RI provides a total addressable memory space of 16 MBytes. This address space is
arranged as 256 segments of 64 KBytes each, and each segment is again subdivided into four data
pages of 16 KBytes each (see figure below).

   

Figure 3-1
Address Space Overview
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Most internal memory areas are mapped into segment 0, the system segment. The upper 4 KByte
of segment 0 (00’F000H … 00’FFFFH) hold the Internal RAM and Special Function Register Areas
(SFR and ESFR). The lower 32 KByte of segment 0 (00’0000H … 00’7FFFH) may be occupied by
a part of the on-chip ROM/Flash/OTP memory and is called the Internal ROM area. This ROM area
can be remapped to segment 1 (01’0000H … 01’7FFFH), to enable external memory access in the
lower half of segment 0, or the internal ROM may be disabled at all.

Code and data may be stored in any part of the internal memory areas, except for the SFR blocks,
which may be used for control / data, but not for instructions.

Note: Accesses to the internal ROM area on ROMless devices will produce unpredictable results.

Bytes are stored at even or odd byte addresses. Words are stored in ascending memory locations
with the low byte at an even byte address being followed by the high byte at the next odd byte
address. Double words (code only) are stored in ascending memory locations as two subsequent
words. Single bits are always stored in the specified bit position at a word address. Bit position 0 is
the least significant bit of the byte at an even byte address, and bit position 15 is the most significant
bit of the byte at the next odd byte address. Bit addressing is supported for a part of the Special
Function Registers, a part of the internal RAM and for the General Purpose Registers.
   

Figure 3-2
Storage of Words, Byte and Bits in a Byte Organized Memory

Note: Byte units forming a single word or a double word must always be stored within the same
physical (internal, external, ROM, RAM) and organizational (page, segment) memory area.
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3.1 Internal ROM  

The C161RI may reserve an address area of variable size (depending on the version) for on-chip
mask-programmable ROM/Flash/OTP memory (organized as X × 32). The lower 32 KByte of this
on-chip memory block are referred to as “Internal ROM Area”. Internal ROM accesses are globally
enabled or disabled via bit ROMEN in register SYSCON. This bit is set during reset according to the
level on pin EA, or may be altered via software. If enabled, the internal ROM area occupies the
lower 32 KByte of either segment 0 or segment 1. This ROM mapping is controlled by bit ROMS1
in register SYSCON.

Note: The size of the internal ROM area is independent of the size of the actual implemented ROM.
Also devices with less than 32 KByte of ROM or with no ROM at all will have this 32 KByte
area occupied, if the ROM is enabled. Devices with larger ROMs provide the mapping option
only for the ROM area.

Devices with a ROM size above 32 KByte expand the ROM area from the middle of segment 1, i.e.
starting at address 01’8000H.

The internal ROM/Flash can be used for both code (instructions) and data (constants, tables, etc.)
storage.

Code fetches are always made on even byte addresses. The highest possible code storage location
in the internal ROM is either xx’xxFEH for single word instructions, or xx’xxFCH for double word
instructions. The respective location must contain a branch instruction (unconditional), because
sequential boundary crossing from internal ROM to external memory is not supported and causes
erroneous results.

Any word and byte data read accesses may use the indirect or long 16-bit addressing modes. There
is no short addressing mode for internal ROM operands. Any word data access is made to an even
byte address. The highest possible word data storage location in the internal ROM is xx’xxFEH. For
PEC data transfers the internal ROM can be accessed independent of the contents of the DPP
registers via the PEC source and destination pointers.

The internal ROM is not provided for single bit storage, and therefore it is not bit addressable.

Note: The ‘x’ in the locations above depend on the available ROM/Flash memory and on the
mapping.

The internal ROM may be enabled, disabled or mapped into segment 0 or segment 1 under
software control. Chapter “System Programming” shows how to do this and reminds of the
precautions that must be taken in order to prevent the system from crashing.
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3.2 Internal RAM and SFR Area   

The RAM/SFR area is located within data page 3 and provides access to the internal RAM (IRAM,
organized as X×16) and to two 512 Byte blocks of Special Function Registers (SFRs).
The C161RI provides 1 KByte of IRAM.

   

Figure 3-3
System Memory Map
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Note: The upper 256 bytes of SFR area, ESFR area and internal RAM are bit-addressable (see
hashed blocks in the figure above).  

Code accesses are always made on even byte addresses. The highest possible code storage
location in the internal RAM is either 00’FDFEH for single word instructions or 00’FDFCH for double
word instructions. The respective location must contain a branch instruction (unconditional),
because sequential boundary crossing from internal RAM to the SFR area is not supported and
causes erroneous results.

Any word and byte data in the internal RAM can be accessed via indirect or long 16-bit addressing
modes, if the selected DPP register points to data page 3. Any word data access is made on an
even byte address. The highest possible word data storage location in the internal RAM is
00’FDFEH. For PEC data transfers, the internal RAM can be accessed independent of the contents
of the DPP registers via the PEC source and destination pointers.

The upper 256 Byte of the internal RAM (00’FD00H through 00’FDFFH) and the GPRs of the current
bank are provided for single bit storage, and thus they are bit addressable.

System Stack   

The system stack may be defined within the internal RAM. The size of the system stack is controlled
by bitfield STKSZ in register SYSCON (see table below).

  

For all system stack operations the on-chip RAM is accessed via the Stack Pointer (SP) register.
The stack grows downward from higher towards lower RAM address locations. Only word accesses
are supported to the system stack. A stack overflow (STKOV) and a stack underflow (STKUN)
register are provided to control the lower and upper limits of the selected stack area. These two
stack boundary registers can be used not only for protection against data destruction, but also allow
to implement a circular stack with hardware supported system stack flushing and filling (except for
option “111”).

The technique of implementing this circular stack is described in chapter “System Programming”.

<STKSZ> Stack Size (Words) Internal RAM Addresses (Words)

0 0 0 B 256 00’FBFEH … 00’FA00H (Default after Reset)

0 0 1 B 128 00’FBFEH … 00’FB00H

0 1 0 B 64 00’FBFEH … 00’FB80H

0 1 1 B 32 00’FBFEH … 00’FBC0H

1 0 0 B --- Reserved. Do not use this combination.

1 0 1 B --- Reserved. Do not use this combination.

1 1 0 B --- Reserved. Do not use this combination.

1 1 1 B 512 00’FDFEH … 00’FA00H (Note: No circular stack)
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General Purpose Registers   

The General Purpose Registers (GPRs) use a block of 16 consecutive words within the internal
RAM. The Context Pointer (CP) register determines the base address of the currently active register
bank. This register bank may consist of up to 16 word GPRs (R0, R1, …, R15) and/or of up to 16
byte GPRs (RL0, RH0, …, RL7, RH7). The sixteen byte GPRs are mapped onto the first eight word
GPRs (see table below).

In contrast to the system stack, a register bank grows from lower towards higher address locations
and occupies a maximum space of 32 Byte. The GPRs are accessed via short 2-, 4- or 8-bit
addressing modes using the Context Pointer (CP) register as base address (independent of the
current DPP register contents). Additionally, each bit in the currently active register bank can be
accessed individually.

Mapping of General Purpose Registers to RAM Addresses  

The C161RI supports fast register bank (context) switching. Multiple register banks can physically
exist within the internal RAM at the same time. Only the register bank selected by the Context
Pointer register (CP) is active at a given time, however. Selecting a new active register bank is
simply done by updating the CP register. A particular Switch Context (SCXT) instruction performs
register bank switching and an automatic saving of the previous context. The number of
implemented register banks (arbitrary sizes) is only limited by the size of the available internal RAM.

Details on using, switching and overlapping register banks are described in chapter “System
Programming”.

Internal RAM Address Byte Registers Word Register

<CP> + 1EH --- R15

<CP> + 1CH --- R14

<CP> + 1AH --- R13

<CP> + 18H --- R12

<CP> + 16H --- R11

<CP> + 14H --- R10

<CP> + 12H --- R9

<CP> + 10H --- R8

<CP> + 0EH RH7 RL7 R7

<CP> + 0CH RH6 RL6 R6

<CP> + 0AH RH5 RL5 R5

<CP> + 08H RH4 RL4 R4

<CP> + 06H RH3 RL3 R3

<CP> + 04H RH2 RL2 R2

<CP> + 02H RH1 RL1 R1

<CP> + 00H RH0 RL0 R0
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PEC Source and Destination Pointers  

The 16 word locations in the internal RAM from 00’FCE0H to 00’FCFEH (just below the bit-
addressable section) are provided as source and destination address pointers for data transfers on
the eight PEC channels. Each channel uses a pair of pointers stored in two subsequent word
locations with the source pointer (SRCPx) on the lower and the destination pointer (DSTPx) on the
higher word address (x = 7 … 0).

   

Figure 3-4
Location of the PEC Pointers
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selected by the specified PEC channel number, is accessed independent of the current DPP
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For more details about the use of the source and destination pointers for PEC data transfers see
section “Interrupt and Trap Functions”.
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Special Function Registers  

The functions of the CPU, the bus interface, the IO ports and the on-chip peripherals of the C161RI
are controlled via a number of so-called Special Function Registers (SFRs). These SFRs are
arranged within two areas of 512 Byte size each. The first register block, the SFR area, is located
in the 512 Bytes above the internal RAM (00’FFFFH … 00’FE00H), the second register block, the
Extended SFR (ESFR) area, is located in the 512 Bytes below the internal RAM
(00’F1FFH … 00’F000H).

Special function registers can be addressed via indirect and long 16-bit addressing modes. Using
an 8-bit offset together with an implicit base address allows to address word SFRs and their
respective low bytes. However, this does not work for the respective high bytes!

Note: Writing to any byte of an SFR causes the non-addressed complementary byte to be cleared!

The upper half of each register block is bit-addressable, so the respective control/status bits can
directly be modified or checked using bit addressing.

When accessing registers in the ESFR area using 8-bit addresses or direct bit addressing, an
Extend Register (EXTR) instruction is required before, to switch the short addressing mechanism
from the standard SFR area to the Extended SFR area. This is not required for 16-bit and indirect
addresses. The GPRs R15 … R0 are duplicated, ie. they are accessible within both register blocks
via short 2-, 4- or 8-bit addresses without switching.

ESFR_SWITCH_EXAMPLE:
EXTR #4 ;Switch to ESFR area for next 4 instr.
MOV ODP2, #data16 ;ODP2 uses 8-bit reg addressing
BFLDL DP6, #mask, #data8 ;Bit addressing for bit fields
BSET DP1H.7 ;Bit addressing for single bits
MOV T8REL, R1 ;T8REL uses 16-bit mem address,

;R1 is duplicated into the ESFR space
;(EXTR is not required for this access)

;---- ;------------------- ;The scope of the EXTR #4 instruction...
;...ends here!

MOV T8REL, R1 ;T8REL uses 16-bit mem address,
;R1 is accessed via the SFR space

In order to minimize the use of the EXTR instructions the ESFR area mostly holds registers which
are mainly required for initialization and mode selection. Registers that need to be accessed
frequently are allocated to the standard SFR area, wherever possible.

Note: The tools are equipped to monitor accesses to the ESFR area and will automatically insert
EXTR instructions, or issue a warning in case of missing or excessive EXTR instructions.
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3.3 The On-Chip XRAM   

The XRAM area is located within data page 3 and provides access to 2 KByte of on-chip RAM
(organized as 1K*16). As the XRAM is connected to the internal XBUS it is accessed like external
memory, however, no external bus cycles are executed for these accesses. XRAM accesses are
globally enabled or disabled via bit XPEN in register SYSCON. This bit is cleared after reset and
may be set via software during the initialization to allow accesses to the on-chip XRAM. When the
XRAM is disabled (default after reset) all accesses to the XRAM area are mapped to external
locations. The XRAM may be used for both code (instructions) and data (variables, user stack,
tables, etc.) storage.

Code fetches are always made on even byte addresses. The highest possible code storage location
in the XRAM is either 00’E7FEH for single word instructions, or 00’E7FCH for double word
instructions. The respective location must contain a branch instruction (unconditional), because
sequential boundary crossing from XRAM to external memory is not supported and causes
erroneous results.

Any word and byte data read accesses may use the indirect or long 16-bit addressing modes. There
is no short addressing mode for XRAM operands. Any word data access is made to an even byte
address.  The highest possible word data storage location in the XRAM is 00’E7FEH. For PEC data
transfers the XRAM can be accessed independent of the contents of the DPP registers via the PEC
source and destination pointers.

Note: As the XRAM appears like external memory it cannot be used for the C161RI’s system stack
or register banks. The XRAM is not provided for single bit storage and therefore is not bit
addressable.

The on-chip XRAM is accessed without any waitstates using 16-bit demultiplexed bus cycles which
take 125 ns (@ 16 MHz fCPU). Even if the XRAM is used like external memory it does not occupy
BUSCONx/ADDRSELx registers but rather is selected via additional dedicated XBCON/XADRS
registers. These registers are mask-programmed and are not user accessible. With these registers
the address area 00’E000H to 00’E7FFH is reserved for XRAM accesses.

XRAM Access via External Masters

When bit XPER-SHARE in register SYSCON is set the on-chip XRAM of the C161RI can be
accessed by an external master during hold mode via the C161RI’s bus interface. These external
accesses must use the same configuration as internally programmed, ie. demultiplexed bus, 125 ns
minimum access cycle time. No waitstates are required.

Note: The configuration in register SYSCON cannot be changed after the execution of the EINIT
instruction.
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3.4 External Memory Space   

The C161RI is capable of using an address space of up to 16 MByte. Only parts of this address
space are occupied by internal memory areas. All addresses which are not used for on-chip
memory (ROM/Flash/OTP or RAM) or for registers may reference external memory locations. This
external memory is accessed via the C161RI’s external bus interface.

Four memory bank sizes are supported:

● Non-segmented mode: 64 KByte with A15 … A0 on PORT0
● 2-bit segmented mode: 256 KByte with A17 ... A16 on Port 4 and A15 … A0 on PORT0
● 4-bit segmented mode: 1 MByte with A19 … A16 on Port 4 and A15 … A0 on PORT0
● 7-bit segmented mode: 8 MByte with A22 … A16 on Port 4 and A15 … A0 on PORT0

Each bank can be directly addressed via the address bus, while the programmable chip select
signals can be used to select various memory banks.

The C161RI also supports four different bus types:

● Multiplexed 16-bit Bus with address and data on PORT0 (Default after Reset)
● Multiplexed 8-bit Bus with address and data on PORT0/P0L
● Demultiplexed 16-bit Bus with address on PORT1 and data on PORT0
● Demultiplexed 8-bit Bus with address on PORT1 and data on P0L

Memory model and bus mode are selected during reset by pin EA and PORT0 pins. For further
details about the external bus configuration and control please refer to chapter "The External Bus
Interface".

External word and byte data can only be accessed via indirect or long 16-bit addressing modes
using one of the four DPP registers. There is no short addressing mode for external operands. Any
word data access is made to an even byte address.

For PEC data transfers the external memory in segment 0 can be accessed independent of the
contents of the DPP registers via the PEC source and destination pointers.

The external memory is not provided for single bit storage and therefore it is not bit addressable.
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3.5 Crossing Memory Boundaries   

The address space of the C161RI is implicitly divided into equally sized blocks of different
granularity and into logical memory areas. Crossing the boundaries between these blocks (code or
data) or areas requires special attention to ensure that the controller executes the desired
operations.

Memory Areas are partitions of the address space that represent different kinds of memory (if
provided at all). These memory areas are the internal RAM/SFR area, the internal ROM/Flash/OTP
(if available), the on-chip X-Peripherals (if integrated) and the external memory.

Accessing subsequent data locations that belong to different memory areas is no problem.
However, when executing code, the different memory areas must be switched explicitly via branch
instructions. Sequential boundary crossing is not supported and leads to erroneous results.

Note: Changing from the external memory area to the internal RAM/SFR area takes place within
segment 0.

Segments are contiguous blocks of 64 KByte each. They are referenced via the code segment
pointer CSP for code fetches and via an explicit segment number for data accesses overriding the
standard DPP scheme.
During code fetching segments are not changed automatically, but rather must be switched
explicitly. The instructions JMPS, CALLS and RETS will do this.
In larger sequential programs make sure that the highest used code location of a segment contains
an unconditional branch instruction to the respective following segment, to prevent the prefetcher
from trying to leave the current segment.

Data Pages are contiguous blocks of 16 KByte each. They are referenced via the data page
pointers DPP3 … 0 and via an explicit data page number for data accesses overriding the standard
DPP scheme. Each DPP register can select one of the possible 1024 data pages. The DPP register
that is used for the current access is selected via the two upper bits of the 16-bit data address.
Subsequent 16-bit data addresses that cross the 16 KByte data page boundaries therefore will use
different data page pointers, while the physical locations need not be subsequent within memory.
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4 The Central Processing Unit (CPU)  

Basic tasks of the CPU are to fetch and decode instructions, to supply operands for the arithmetic
and logic unit (ALU), to perform operations on these operands in the ALU, and to store the
previously calculated results. As the CPU is the main engine of the C161RI controller, it is also
affected by certain actions of the peripheral subsystem.

Since a four stage pipeline is implemented in the C161RI, up to four instructions can be processed
in parallel. Most instructions of the C161RI are executed in one machine cycle (2 CPU clock
periods) due to this parallelism. This chapter describes how the pipeline works for sequential and
branch instructions in general, and which hardware provisions have been made to speed the
execution of jump instructions in particular. The general instruction timing is described including
standard and exceptional timing.

While internal memory accesses are normally performed by the CPU itself, external peripheral or
memory accesses are performed by a particular on-chip External Bus Controller (EBC), which is
automatically invoked by the CPU whenever a code or data address refers to the external address
space. If possible, the CPU continues operating while an external memory access is in progress. If
external data are required but are not yet available, or if a new external memory access is requested
by the CPU, before a previous access has been completed, the CPU will be held by the EBC until
the request can be satisfied. The EBC is described in a dedicated chapter.

      

Figure 4-1
CPU Block Diagram
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The on-chip peripheral units of the C161RI work nearly independent of the CPU with a separate
clock generator. Data and control information is interchanged between the CPU and these
peripherals via Special Function Registers (SFRs). Whenever peripherals need a non-deterministic
CPU action, an on-chip Interrupt Controller compares all pending peripheral service requests
against each other and prioritizes one of them. If the priority of the current CPU operation is lower
than the priority of the selected peripheral request, an interrupt will occur.

Basically, there are two types of interrupt processing:

• Standard interrupt processing  forces the CPU to save the current program status and the return
address on the stack before branching to the interrupt vector jump table.

• PEC interrupt processing  steals just one machine cycle from the current CPU activity to perform
a single data transfer via the on-chip Peripheral Event Controller (PEC).

System errors detected during program execution (socalled hardware traps) or an external non-
maskable interrupt are also processed as standard interrupts with a very high priority.

In contrast to other on-chip peripherals, there is a closer conjunction between the watchdog timer
and the CPU. If enabled, the watchdog timer expects to be serviced by the CPU within a
programmable period of time, otherwise it will reset the chip. Thus, the watchdog timer is able to
prevent the CPU from going totally astray when executing erroneous code. After reset, the
watchdog timer starts counting automatically, but it can be disabled via software, if desired.

Beside its normal operation there are the following particular CPU states:

• Reset state:  Any reset (hardware, software, watchdog) forces the CPU into a predefined active
state.

• IDLE state:  The clock signal to the CPU itself is switched off, while the clocks for the on-chip
peripherals keep running.

• POWER DOWN state:  All of the on-chip clocks are switched off (RTC clock selectable).

A transition into an active CPU state is forced by an interrupt (if being IDLE) or by a reset (if being
in POWER DOWN mode).
The IDLE, POWER DOWN and RESET states can be entered by particular C161RI system control
instructions.

A set of Special Function Registers is dedicated to the functions of the CPU core:

• General System Configuration : SYSCON (RP0H)
• CPU Status Indication and Control : PSW
• Code Access Control : IP, CSP
• Data Paging Control : DPP0, DPP1, DPP2, DPP3
• GPRs Access Control : CP
• System Stack Access Control : SP, STKUN, STKOV
• Multiply and Divide Support : MDL, MDH, MDC
• ALU Constants Support : ZEROS, ONES
Semiconductor Group 4-2 1998-05-01



The Central Processing Unit (CPU)
C161RI
4.1 Instruction Pipelining  

The instruction pipeline of the C161RI partitiones instruction processing into four stages of which
each one has its individual task:

1st –>FETCH:
In this stage the instruction selected by the Instruction Pointer (IP) and the Code Segment Pointer
(CSP) is fetched from either the internal ROM, internal RAM, or external memory.

2nd –>DECODE:
In this stage the instructions are decoded and, if required, the operand addresses are calculated
and the respective operands are fetched. For all instructions, which implicitly access the system
stack, the SP register is either decremented or incremented, as specified. For branch instructions
the Instruction Pointer and the Code Segment Pointer are updated with the desired branch target
address (provided that the branch is taken).

3rd –>EXECUTE:
In this stage an operation is performed on the previously fetched operands in the ALU. Additionally,
the condition flags in the PSW register are updated as specified by the instruction. All explicit writes
to the SFR memory space and all auto-increment or auto-decrement writes to GPRs used as
indirect address pointers are performed during the execute stage of an instruction, too.

4th –>WRITE BACK:
In this stage all external operands and the remaining operands within the internal RAM space are
written back.

A particularity of the C161RI are the so-called injected instructions. These injected instructions are
generated internally by the machine to provide the time needed to process instructions, which
cannot be processed within one machine cycle. They are automatically injected into the decode
stage of the pipeline, and then they pass through the remaining stages like every standard
instruction. Program interrupts are performed by means of injected instructions, too. Although these
internally injected instructions will not be noticed in reality, they are introduced here to ease the
explanation of the pipeline in the following.

Sequential Instruction Processing

Each single instruction has to pass through each of the four pipeline stages regardless of whether
all possible stage operations are really performed or not. Since passing through one pipeline stage
takes at least one machine cycle, any isolated instruction takes at least four machine cycles to be
completed. Pipelining, however, allows parallel (i.e. simultaneous) processing of up to four
instructions. Thus, most of the instructions seem to be processed during one machine cycle as soon
as the pipeline has been filled once after reset (see figure below).

Instruction pipelining increases the average instruction throughput considered over a certain period
of time. In the following, any execution time specification of an instruction always refers to the
average execution time due to pipelined parallel instruction processing.
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Figure 4-2
Sequential Instruction Pipelining

Standard Branch Instruction Processing  

Instruction pipelining helps to speed sequential program processing. In the case that a branch is
taken, the instruction which has already been fetched providently is mostly not the instruction which
must be decoded next. Thus, at least one additional machine cycle is normally required to fetch the
branch target instruction. This extra machine cycle is provided by means of an injected instruction
(see figure below).
   

Figure 4-3
Standard Branch Instruction Pipelining

If a conditional branch is not taken, there is no deviation from the sequential program flow, and thus
no extra time is required. In this case the instruction after the branch instruction will enter the decode
stage of the pipeline at the beginning of the next machine cycle after decode of the conditional
branch instruction.
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Cache Jump Instruction Processing

The C161RI incorporates a jump cache to optimize conditional jumps, which are processed
repeatedly within a loop. Whenever a jump on cache is taken, the extra time to fetch the branch
target instruction can be saved and thus the corresponding cache jump instruction in most cases
takes only one machine cycle.

This performance is achieved by the following mechanism:
Whenever a cache jump instruction passes through the decode stage of the pipeline for the first time
(and provided that the jump condition is met), the jump target instruction is fetched as usual, causing
a time delay of one machine cycle. In contrast to standard branch instructions, however, the target
instruction of a cache jump instruction (JMPA, JMPR, JB, JBC, JNB, JNBS) is additionally stored in
the cache after having been fetched.

After each repeatedly following execution of the same cache jump instruction, the jump target
instruction is not fetched from program memory but taken from the cache and immediately injected
into the decode stage of the pipeline (see figure below).

A time saving jump on cache is always taken after the second and any further occurrence of the
same cache jump instruction, unless an instruction which, has the fundamental capability of
changing the CSP register contents (JMPS, CALLS, RETS, TRAP, RETI), or any standard interrupt
has been processed during the period of time between two following occurrences of the same
cache jump instruction.

   

Figure 4-4
Cache Jump Instruction Pipelining
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Particular Pipeline Effects   

Since up to four different instructions are processed simultaneously, additional hardware has been
spent in the C161RI to consider all causal dependencies which may exist on instructions in different
pipeline stages without a loss of performance. This extra hardware (i.e. for ’forwarding’ operand
read and write values) resolves most of the possible conflicts (e.g. multiple usage of buses) in a time
optimized way and thus avoids that the pipeline becomes noticeable for the user in most cases.
However, there are some very rare cases, where the circumstance that the C161RI is a pipelined
machine requires attention by the programmer. In these cases the delays caused by pipeline
conflicts can be used for other instructions in order to optimize performance.

• Context Pointer Updating

An instruction, which calculates a physical GPR operand address via the CP register, is mostly not
capable of using a new CP value, which is to be updated by an immediately preceding instruction.
Thus, to make sure that the new CP value is used, at least one instruction must be inserted between
a CP-changing and a subsequent GPR-using instruction, as shown in the following example:

In : SCXT  CP, #0FC00h ; select a new context
In + 1 : … ; must not be an instruction using a GPR
In + 2 : MOV   R0, #dataX ; write to GPR 0 in the new context

• Data Page Pointer Updating

An instruction, which calculates a physical operand address via a particular DPPn (n = 0 to 3)
register, is mostly not capable of using a new DPPn register value, which is to be updated by an
immediately preceding instruction. Thus, to make sure that the new DPPn register value is used, at
least one instruction must be inserted between a DPPn-changing instruction and a subsequent
instruction which implicitly uses DPPn via a long or indirect addressing mode, as shown in the
following example:

In : MOV   DPP0, #4 ; select data page 4 via DPP0
In + 1 : … ; must not be an instruction using DPP0
In + 2 : MOV   DPP0:0000H, R1 ; move contents of R1 to address location 01’0000H

; (in data page 4) supposed segmentation is enabled

• Explicit Stack Pointer Updating

None of the RET, RETI, RETS, RETP or POP instructions is capable of correctly using a new SP
register value, which is to be updated by an immediately preceding instruction. Thus, in order to use
the new SP register value without erroneously performed stack accesses, at least one instruction
must be inserted between an explicitly SP-writing and any subsequent of the just mentioned
implicitly SP-using instructions, as shown in the following example:

In : MOV   SP, #0FA40H ; select a new top of stack
In + 1 : … ; must not be an instruction popping operands

; from the system stack
In + 2 : POP   R0 ; pop word value from new top of stack into R0

Note: Conflicts with instructions writing to the stack (PUSH, CALL, SCXT) are solved internally by
the CPU logic.
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• External Memory Access Sequences

The effect described here will only become noticeable, when watching the external memory access
sequences on the external bus (e.g. by means of a Logic Analyzer). Different pipeline stages can
simultaneously put a request on the External Bus Controller (EBC). The sequence of instructions
processed by the CPU may diverge from the sequence of the corresponding external memory
accesses performed by the EBC, due to the predefined priority of external memory accesses:

1st Write Data
2nd Fetch Code
3rd Read Data.

• Controlling Interrupts

Software modifications (implicit or explicit) of the PSW are done in the execute phase of the
respective instructions. In order to maintain fast interrupt responses, however, the current interrupt
prioritization round does not consider these changes, i.e. an interrupt request may be
acknowledged after the instruction that disables interrupts via IEN or ILVL or after the following
instructions. Timecritical instruction sequences therefore should not begin directly after the
instruction disabling interrupts, as shown in the following example:

INT_OFF: BCLR IEN ; globally disable interrupts
IN-1 ; non-critical instruction

CRIT_1ST: IN ; begin of uninterruptable critical sequence
. . .

CRIT_LAST: IN+x ; end of uninterruptable critical sequence
INT_ON: BSET IEN ; globally re-enable interrupts

Note: The described delay of 1 instruction also applies for enabling the interrupts system i.e. no
interrupt requests are acknowledged until the instruction following the enabling instruction.

• Initialization of Port Pins

Modifications of the direction of port pins (input or output) become effective only after the instruction
following the modifying instruction. As bit instructions (BSET, BCLR) use internal read-modify-write
sequences accessing the whole port, instructions modifying the port direction should be followed by
an instruction that does not access the same port (see example below).

PORT_INIT_WRONG:
BSET DP3.13 ;change direction of P3.13 to output
BSET P3.9 ;P3.13 is still input,

;rd-mod-wr reads pin P3.13

PORT_INIT_RIGHT:
BSET DP3.13 ;change direction of P3.13 to output
NOP ;any instruction not accessing port 3
BSET P3.9 ;P3.13 is now output,

;rd-mod-wr reads P3.13’s output latch
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• Changing the System Configuration

The instruction following an instruction that changes the system configuration via register SYSCON
(e.g. the mapping of the internal ROM, segmentation, stack size) cannot use the new resources
(e.g. ROM or stack). In these cases an instruction that does not access these resources should be
inserted. Code accesses to the new ROM area are only possible after an absolute branch to this
area.

Note: As a rule, instructions that change ROM mapping should be executed from internal RAM or
external memory.

• BUSCON/ADDRSEL

The instruction following an instruction that changes the properties of an external address area
cannot access operands within the new area. In these cases an instruction that does not access this
address area should be inserted. Code accesses to the new address area should be made after an
absolute branch to this area.

Note: As a rule, instructions that change external bus properties should not be executed from the
respective external memory area.

• Timing

Instruction pipelining reduces the average instruction processing time in a wide scale (from four to
one machine cycles, mostly). However, there are some rare cases, where a particular pipeline
situation causes the processing time for a single instruction to be extended either by a half or by one
machine cycle. Although this additional time represents only a tiny part of the total program
execution time, it might be of interest to avoid these pipeline-caused time delays in time critical
program modules.

Besides a general execution time description, the following section provides some hints on how to
optimize time-critical program parts with regard to such pipeline-caused timing particularities.
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4.2 Bit-Handling and Bit-Protection   

The C161RI provides several mechanisms to manipulate bits. These mechanisms either
manipulate software flags within the internal RAM, control on-chip peripherals via control bits in their
respective SFRs or control IO functions via port pins.

The instructions BSET, BCLR, BAND, BOR, BXOR, BMOV, BMOVN explicitly set or clear specific
bits. The instructions BFLDL and BFLDH allow to manipulate up to 8 bits of a specific byte at one
time. The instructions JBC and JNBS implicitly clear or set the specified bit when the jump is taken.
The instructions JB and JNB (also conditional jump instructions that refer to flags) evaluate the
specified bit to determine if the jump is to be taken.

Note: Bit operations on undefined bit locations will always read a bit value of ‘0’, while the write
access will not effect the respective bit location.

All instructions that manipulate single bits or bit groups internally use a read-modify-write sequence
that accesses the whole word, which contains the specified bit(s).

This method has several consequences:

• Bits can only be modified within the internal address areas, i.e. internal RAM and SFRs. External
locations cannot be used with bit instructions.

The upper 256 bytes of the SFR area, the ESFR area and the internal RAM are bit-addressable (see
chapter “Memory Organization”), i.e. those register bits located within the respective sections can
be directly manipulated using bit instructions. The other SFRs must be accessed byte/word wise.

Note: All GPRs are bit-addressable independent of the allocation of the register bank via the
context pointer CP. Even GPRs which are allocated to not bit-addressable RAM locations
provide this feature.

• The read-modify-write approach may be critical with hardware-effected bits. In these cases the
hardware may change specific bits while the read-modify-write operation is in progress, where
the writeback would overwrite the new bit value generated by the hardware. The solution is either
the implemented hardware protection (see below) or realized through special programming (see
“Particular Pipeline Effects”).

Protected bits are not changed during the read-modify-write sequence, i.e. when hardware sets
e.g. an interrupt request flag between the read and the write of the read-modify-write sequence. The
hardware protection logic guarantees that only the intended bit(s) is/are effected by the write-back
operation.  

Note: If a conflict occurs between a bit manipulation generated by hardware and an intended
software access the software access has priority and determines the final value of the
respective bit.

A summary of the protected bits implemented in the C161RI can be found at the end of chapter
“Architectural Overview”.
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4.3 Instruction State Times   

Basically, the time to execute an instruction depends on where the instruction is fetched from, and
where possible operands are read from or written to. The fastest processing mode of the C161RI is
to execute a program fetched from the internal code memory. In that case most of the instructions
can be processed within just one machine cycle, which is also the general minimum execution time.

All external memory accesses are performed by the C161RI’s on-chip External Bus Controller
(EBC), which works in parallel with the CPU.

This section summarizes the execution times in a very condensed way. A detailed description of the
execution times for the various instructions and the specific exceptions can be found in the
“C16x Family Instruction Set Manual” .

The table below shows the minimum execution times required to process a C161RI instruction
fetched from the internal code memory, the internal RAM or from external memory. These execution
times apply to most of the C161RI instructions - except some of the branches, the multiplication, the
division and a special move instruction. In case of internal ROM program execution there is no
execution time dependency on the instruction length except for some special branch situations. The
numbers in the table are in units of CPU clock cycles and assume no waitstates.

Minimum Execution Times   

Execution from the internal RAM provides flexibility in terms of loadable and modifiable code on the
account of execution time.
Execution from external memory strongly depends on the selected bus mode and the programming
of the bus cycles (waitstates).

The operand and instruction accesses listed below can extend the execution time of an instruction:

• Internal code memory operand reads (same for byte and word operand reads)
• Internal RAM operand reads via indirect addressing modes
• Internal SFR operand reads immediately after writing
• External operand reads
• External operand writes
• Jumps to non-aligned double word instructions in the internal ROM space
• Testing Branch Conditions immediately after PSW writes

Instruction Fetch Word Operand Access

Memory Area Word 
Instruction

Doubleword 
Instruction

Read from Write to

Internal code memory 2 2 2 ---

Internal RAM 6 8 0/1 0

16-bit Demux Bus 2 4 2 2

16-bit Mux Bus 3 6 3 3

8-bit Demux Bus 4 8 4 4

8-bit Mux Bus 6 12 6 6
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4.4 CPU Special Function Registers

The core CPU requires a set of Special Function Registers (SFRs) to maintain the system state
information, to supply the ALU with register-addressable constants and to control system and bus
configuration, multiply and divide ALU operations, code memory segmentation, data memory
paging, and accesses to the General Purpose Registers and the System Stack.

The access mechanism for these SFRs in the CPU core is identical to the access mechanism for
any other SFR. Since all SFRs can simply be controlled by means of any instruction, which is
capable of addressing the SFR memory space, a lot of flexibility has been gained, without the need
to create a set of system-specific instructions.

Note, however, that there are user access restrictions for some of the CPU core SFRs to ensure
proper processor operations. The instruction pointer IP and code segment pointer CSP cannot be
accessed directly at all. They can only be changed indirectly via branch instructions.

The PSW, SP, and MDC registers can be modified not only explicitly by the programmer, but also
implicitly by the CPU during normal instruction processing. Note that any explicit write request (via
software) to an SFR supersedes a simultaneous modification by hardware of the same register.

Note: Any write operation to a single byte of an SFR clears the non-addressed complementary byte
within the specified SFR.
Non-implemented (reserved) SFR bits cannot be modified, and will always supply a read
value of ’0’.

The System Configuration Register SYSCON   

This bit-addressable register provides general system configuration and control functions. The
reset value for register SYSCON depends on the state of the PORT0 pins during reset (see
hardware effectable bits).

SYSCON (FF12H / 89H)    SFR  Reset Value: 0XX0H   

Bit Function

XPER-SHARE XBUS Peripheral Share Mode Control
0: External accesses to XBUS peripherals are disabled
1: XBUS peripherals are accessible via the external bus during hold mode

VISIBLE Visible Mode Control
0: Accesses to XBUS peripherals are done internally
1: XBUS peripheral accesses are made visible on the external pins

WR
CFG

BDRST
EN

CS
CFG XPEN

XPER-
SHARE

VISI
BLE-

OWD
DIS

ROM
S1

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- rw rwrw rw rwrw rw

STKSZ
SGT
DIS

ROM
EN

rw

BYT
DIS

CLK
EN

rw rw rw rwrw
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Note: Register SYSCON cannot be changed after execution of the EINIT instruction.
The function of bits XPER-SHARE, VISIBLE, WRCFG, BYTDIS, ROMEN and ROMS1 is
described in more detail in chapter “The External Bus Controller”.

XPEN XBUS Peripheral Enable Bit
0: Accesses to the on-chip X-Peripherals and their functions are disabled
1: The on-chip X-Peripherals are enabled and can be accessed

BDRSTEN Bidirectional Reset Enable Bit
0: Pin RSTIN is an input only.
1: Pin RSTIN is pulled low during the internal reset sequence.

OWDDIS Oscillator Watchdog Disable Bit
0: The on-chip oscillator watchdog is enabled and active.
1: The on-chip oscillator watchdog is disabled and the CPU clock

 is always fed from the oscillator input.

CSCFG Chip Select Configuration Control
0: Latched CS mode. The CS signals are latched internally

and driven to the (enabled) port pins synchronously.
1: Unlatched CS mode. The CS signals are directly derived from the address

and driven to the (enabled) port pins.

WRCFG Write Configuration Control (Set according to pin P0H.0 during reset)
0: Pins WR and BHE retain their normal function
1: Pin WR acts as WRL, pin BHE acts as WRH

CLKEN System Clock Output Enable (CLKOUT)
0: CLKOUT disabled: pin may be used for general purpose IO
1: CLKOUT enabled: pin outputs the system clock signal

BYTDIS Disable/Enable Control for Pin BHE (Set according to data bus width)
0: Pin BHE enabled
1: Pin BHE disabled, pin may be used for general purpose IO

ROMEN Internal ROM Enable (Set according to pin EA during reset)
0: Internal ROM disabled: accesses to the ROM area use the external bus
1: Internal ROM enabled

SGTDIS Segmentation Disable/Enable Control
0: Segmentation enabled

(CSP and IP are saved/restored during interrupt entry/exit)
1: Segmentation disabled (Only IP is saved/restored)

ROMS1 Internal ROM Mapping
0: Internal ROM area mapped to segment 0 (00’0000H … 00’7FFFH)
1: Internal ROM area mapped to segment 1 (01’0000H … 01’7FFFH)

STKSZ System Stack Size
Selects the size of the system stack (in the internal RAM) from 32 to 1024 words

Bit Function
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System Clock Output Enable (CLKEN)

The system clock output function is enabled by setting bit CLKEN in register SYSCON to ’1’. If
enabled, port pin P3.15 takes on its alternate function as CLKOUT output pin. The clock output is
a 50 % duty cycle clock (except for direct drive operation where CLKOUT reflects the clock input
signal, and for slowdown operation where CLKOUT mirrors the CPU clock signal) whose frequency
equals the CPU operating frequency (fOUT = fCPU).

Note: The output driver of port pin P3.15 is switched on automatically, when the CLKOUT function
is enabled. The port direction bit is disregarded.
After reset, the clock output function is disabled (CLKEN = ‘0’).
In emulation mode the CLKOUT function is enabled automatically.

Segmentation Disable/Enable Control (SGTDIS)  

Bit SGTDIS allows to select either the segmented or non-segmented memory mode.
In non-segmented memory mode (SGTDIS = '1') it is assumed that the code address space is
restricted to 64 KBytes (segment 0) and thus 16 bits are sufficient to represent all code addresses.
For implicit stack operations (CALL or RET) the CSP register is totally ignored and only the IP is
saved to and restored from the stack.
In segmented memory mode (SGTDIS = '0') it is assumed that the whole address space is
available for instructions. For implicit stack operations (CALL or RET) the CSP register and the IP
are saved to and restored from the stack. After reset the segmented memory mode is selected.

Note: Bit SGTDIS controls if the CSP register is pushed onto the system stack in addition to the IP
register before an interrupt service routine is entered, and it is repopped when the interrupt
service routine is left again.

System Stack Size (STKSZ)

This bitfield defines the size of the physical system stack, which is located in the internal RAM of the
C161RI. An area of 32 … 256 words or all of the internal RAM may be dedicated to the system
stack. A so-called “circular stack” mechanism allows to use a bigger virtual stack than this dedicated
RAM area.

These techniques as well as the encoding of bitfield STKSZ are described in more detail in chapter
“System Programming”.
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The Processor Status Word PSW   

This bit-addressable register reflects the current state of the microcontroller. Two groups of bits
represent the current ALU status, and the current CPU interrupt status. A separate bit (USR0) within
register PSW is provided as a general purpose user flag.  

PSW (FF10H / 88H)   SFR Reset Value: 0000H   

ALU Status (N, C, V, Z, E, MULIP)  

The condition flags (N, C, V, Z, E) within the PSW indicate the ALU status due to the last recently
performed ALU operation. They are set by most of the instructions due to specific rules, which
depend on the ALU or data movement operation performed by an instruction.

After execution of an instruction which explicitly updates the PSW register, the condition flags
cannot be interpreted as described in the following, because any explicit write to the PSW register
supersedes the condition flag values, which are implicitly generated by the CPU. Explicitly reading
the PSW register supplies a read value which represents the state of the PSW register after
execution of the immediately preceding instruction.

Note: After reset, all of the ALU status bits are cleared.

Bit Function

N Negative Result
Set, when the result of an ALU operation is negative.

C Carry Flag
Set, when the result of an ALU operation produces a carry bit.

V Overflow Result
Set, when the result of an ALU operation produces an overflow.

Z Zero Flag
Set, when the result of an ALU operation is zero.

E End of Table Flag
Set, when the source operand of an instruction is 8000H or 80H.

MULIP Multiplication/Division In Progress
‘0’: There is no multiplication/division in progress.
‘1’: A multiplication/division has been interrupted.

USR0 User General Purpose Flag
May be used by the application software.

HLDEN,
ILVL, IEN

Interrupt and EBC Control Fields
Define the response to interrupt requests and enable external bus arbitration. 
(Described in section “Interrupt and Trap Functions”)

HLD
EN

MUL
IPUSR0- NZ CVE

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw- rw rw rw-rw -rw

IEN --ILVL

rw
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• N-Flag:  For most of the ALU operations, the N-flag is set to ’1’, if the most significant bit of the
result contains a ’1’, otherwise it is cleared. In the case of integer operations the N-flag can be
interpreted as the sign bit of the result (negative: N = ’1’, positive: N = ’0’). Negative numbers are
always represented as the 2's complement of the corresponding positive number. The range of
signed numbers extends from '– 8000H' to '+ 7FFFH' for the word data type, or from '– 80H' to '+ 7FH'
for the byte data type. For Boolean bit operations with only one operand the N-flag represents the
previous state of the specified bit. For Boolean bit operations with two operands the N-flag
represents the logical XORing of the two specified bits.

• C-Flag:  After an addition the C-flag indicates that a carry from the most significant bit of the
specified word or byte data type has been generated. After a subtraction or a comparison the C-flag
indicates a borrow, which represents the logical negation of a carry for the addition.
This means that the C-flag is set to ’1’, if no  carry from the most significant bit of the specified word
or byte data type has been generated during a subtraction, which is performed internally by the ALU
as a 2’s complement addition, and the C-flag is cleared when this complement addition caused a
carry.
The C-flag is always cleared for logical, multiply and divide ALU operations, because these
operations cannot cause a carry anyhow.
For shift and rotate operations the C-flag represents the value of the bit shifted out last. If a shift
count of zero is specified, the C-flag will be cleared. The C-flag is also cleared for a prioritize ALU
operation, because a ’1’ is never shifted out of the MSB during the normalization of an operand.
For Boolean bit operations with only one operand the C-flag is always cleared. For Boolean bit
operations with two operands the C-flag represents the logical ANDing of the two specified bits.

• V-Flag:  For addition, subtraction and 2’s complementation the V-flag is always set to ’1’, if the
result overflows the maximum range of signed numbers, which are representable by either 16 bits
for word operations ('– 8000H' to '+ 7FFFH'), or by 8 bits for byte operations ('– 80H' to '+ 7FH'),
otherwise the V-flag is cleared. Note that the result of an integer addition, integer subtraction, or 2's
complement is not valid, if the V-flag indicates an arithmetic overflow.
For multiplication and division the V-flag is set to '1', if the result cannot be represented in a word
data type, otherwise it is cleared. Note that a division by zero will always cause an overflow. In
contrast to the result of a division, the result of a multiplication is valid regardless of whether the
V-flag is set to '1' or not.
Since logical ALU operations cannot produce an invalid result, the V-flag is cleared by these
operations.

The V-flag is also used as 'Sticky Bit' for rotate right and shift right operations. With only using the
C-flag, a rounding error caused by a shift right operation can be estimated up to a quantity of one
half of the LSB of the result. In conjunction with the V-flag, the C-flag allows evaluating the rounding
error with a finer resolution (see table below).
For Boolean bit operations with only one operand the V-flag is always cleared. For Boolean bit
operations with two operands the V-flag represents the logical ORing of the two specified bits.
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Shift Right Rounding Error Evaluation   

• Z-Flag:  The Z-flag is normally set to ’1’, if the result of an ALU operation equals zero, otherwise it
is cleared.
For the addition and subtraction with carry the Z-flag is only set to ’1’, if the Z-flag already contains
a ’1’ and the result of the current ALU operation additionally equals zero. This mechanism is
provided for the support of multiple precision calculations.
For Boolean bit operations with only one operand the Z-flag represents the logical negation of the
previous state of the specified bit. For Boolean bit operations with two operands the Z-flag
represents the logical NORing of the two specified bits. For the prioritize ALU operation the Z-flag
indicates, if the second operand was zero or not.

• E-Flag:  The E-flag can be altered by instructions, which perform ALU or data movement
operations. The E-flag is cleared by those instructions which cannot be reasonably used for table
search operations. In all other cases the E-flag is set depending on the value of the source operand
to signify whether the end of a search table is reached or not. If the value of the source operand of
an instruction equals the lowest negative number, which is representable by the data format of the
corresponding instruction (’8000H’ for the word data type, or ’80H’ for the byte data type), the E-flag
is set to ’1’, otherwise it is cleared.

• MULIP-Flag:  The MULIP-flag will be set to ’1’ by hardware upon the entrance into an interrupt
service routine, when a multiply or divide ALU operation was interrupted before completion.
Depending on the state of the MULIP bit, the hardware decides whether a multiplication or division
must be continued or not after the end of an interrupt service. The MULIP bit is overwritten with the
contents of the stacked MULIP-flag when the return-from-interrupt-instruction (RETI) is executed.
This normally means that the MULIP-flag is cleared again after that.

Note: The MULIP flag is a part of the task environment! When the interrupting service routine does
not return to the interrupted multiply/divide instruction (i.e. in case of a task scheduler that
switches between independent tasks), the MULIP flag must be saved as part of the task
environment and must be updated accordingly for the new task before this task is entered.

  

C-Flag V-Flag Rounding Error Quantity

0
0
1
1

0
1
0
1

- No rounding error -
0 < Rounding error <  1/2 LSB

Rounding error =  1/2 LSB
Rounding error >  1/2 LSB
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CPU Interrupt Status (IEN, ILVL)

The Interrupt Enable bit allows to globally enable (IEN = ’1’) or disable (IEN = ’0’) interrupts. The
four-bit Interrupt Level field (ILVL) specifies the priority of the current CPU activity. The interrupt
level is updated by hardware upon entry into an interrupt service routine, but it can also be modified
via software to prevent other interrupts from being acknowledged. In case an interrupt level '15' has
been assigned to the CPU, it has the highest possible priority, and thus the current CPU operation
cannot be interrupted except by hardware traps or external non-maskable interrupts. For details
please refer to chapter “Interrupt and Trap Functions”.

After reset all interrupts are globally disabled, and the lowest priority (ILVL = 0) is assigned to the
initial CPU activity.

The Instruction Pointer IP   

This register determines the 16-bit intra-segment address of the currently fetched instruction within
the code segment selected by the CSP register. The IP register is not mapped into the C161RI's
address space, and thus it is not directly accessable by the programmer. The IP can, however, be
modified indirectly via the stack by means of a return instruction.

The IP register is implicitly updated by the CPU for branch instructions and after instruction fetch
operations.

IP (---- / --)   --- Reset Value: 0000H   

Bit Function

ip Specifies the intra segment offset, from where the current instruction is to be 
fetched. IP refers to the current segment <SEGNR>.

5 4 3 2 1 011 10 9 8 7 615 14 13 12

(r)(w)

ip
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The Code Segment Pointer CSP   

This non-bit addressable register selects the code segment being used at run-time to access
instructions. The lower 8 bits of register CSP select one of up to 256 segments of 64 KBytes each,
while the upper 8 bits are reserved for future use.

CSP (FE08H / 04H)   SFR Reset Value: 0000H   

  

Code memory addresses are generated by directly extending the 16-bit contents of the IP register
by the contents of the CSP register as shown in the figure below.

In case of the segmented memory mode the selected number of segment address bits (via bitfield
SALSEL) of register CSP is output on the respective segment address pins of Port 4 for all external
code accesses. For non-segmented memory mode or Single Chip Mode the content of this register
is not significant, because all code acccesses are automatically restricted to segment 0.

Note: The CSP register can only be read but not written by data operations. It is, however, modified
either directly by means of the JMPS and CALLS instructions, or indirectly via the stack by
means of the RETS and RETI instructions.
Upon the acceptance of an interrupt or the execution of a software TRAP instruction, the
CSP register is automatically set to zero.

Bit Function

SEGNR Segment Number
Specifies the code segment, from where the current instruction is to be fetched. 
SEGNR is ignored, when segmentation is disabled.

- -- --

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- - - r-- --

- --

-

SEGNR
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Figure 4-5
Addressing via the Code Segment Pointer

Note: When segmentation is disabled, the IP value is used directly as the 16-bit address.
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The Data Page Pointers DPP0, DPP1, DPP2, DPP3   

These four non-bit addressable registers select up to four different data pages being active
simultaneously at run-time. The lower 10 bits of each DPP register select one of the 1024 possible
16-Kbyte data pages while the upper 6 bits are reserved for future use. The DPP registers allow to
access the entire memory space in pages of 16 Kbytes each.

The DPP registers are implicitly used, whenever data accesses to any memory location are made
via indirect or direct long 16-bit addressing modes (except for override accesses via EXTended
instructions and PEC data transfers). After reset, the Data Page Pointers are initialized in a way that
all indirect or direct long 16-bit addresses result in identical 18-bit addresses. This allows to access
data pages 3 … 0 within segment 0 as shown in the figure below. If the user does not want to use
any data paging, no further action is required.

DPP0 (FE00H / 00H)   SFR Reset Value: 0000H   

DPP1 (FE02H / 01H)   SFR Reset Value: 0001H   

DPP2 (FE04H / 02H)   SFR Reset Value: 0002H   

DPP3 (FE06H / 03H)   SFR Reset Value: 0003H   

Bit Function

DPPxPN Data Page Number of DPPx
Specifies the data page selected via DPPx. Only the least significant two bits of 
DPPx are significant, when segmentation is disabled.

- --
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- rw-- --
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-

DPP0PN

- --
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DPP1PN

- --
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- --
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Data paging is performed by concatenating the lower 14 bits of an indirect or direct long 16-bit
address with the contents of the DPP register selected by the upper two bits of the 16-bit address.
The contents of the selected DPP register specify one of the 1024 possible data pages. This data
page base address together with the 14-bit page offset forms the physical 24-bit address
(selectable part is driven to the address pins).

In case of non-segmented memory mode, only the two least significant bits of the implicitly selected
DPP register are used to generate the physical address. Thus, extreme care should be taken when
changing the content of a DPP register, if a non-segmented memory model is selected, because
otherwise unexpected results could occur.

In case of the segmented memory mode the selected number of segment address bits (via bitfield
SALSEL) of the respective DPP register is output on the respective segment address pins of Port 4
for all external data accesses.

A DPP register can be updated via any instruction, which is capable of modifying an SFR.

Note: Due to the internal instruction pipeline, a new DPP value is not yet usable for the operand
address calculation of the instruction immediately following the instruction updating the DPP
register.

   

Figure 4-6
Addressing via the Data Page Pointers

After reset or with segmentation disabled the DPP registers select data pages 3 … 0.
All of the internal memory is accessible in these cases.
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The Context Pointer CP   

This non-bit addressable register is used to select the current register context. This means that the
CP register value determines the address of the first General Purpose Register (GPR) within the
current register bank of up to 16 wordwide and/or bytewide GPRs.  

CP (FE10H / 08H)   SFR Reset Value: FC00H   

Note: It is the user’s responsibility that the physical GPR address specified via CP register plus
short GPR address must always be an internal RAM location. If this condition is not met,
unexpected results may occur.
• Do not set CP below the IRAM start address, i.e. 00’FA00H/00’F600H/00’F200H (1/2/3KB)
• Do not set CP above 00’FDFEH

• Be careful using the upper GPRs with CP above 00’FDE0H

The CP register can be updated via any instruction which is capable of modifying an SFR.

Note: Due to the internal instruction pipeline, a new CP value is not yet usable for GPR address
calculations of the instruction immediately following the instruction updating the CP register.

The Switch Context instruction (SCXT) allows to save the content of register CP on the stack and
updating it with a new value in just one machine cycle.

Bit Function

cp Modifiable portion of register CP
Specifies the (word) base address of the current register bank.
When writing a value to register CP with bits CP.11 … CP.9 = ‘000’, bits 
CP.11 … CP.10 are set to ‘11’ by hardware, in all other cases all bits of bit field 
“cp” receive the written value.

1 01
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Figure 4-7
Register Bank Selection via Register CP

Several addressing modes use register CP implicitly for address calculations. The addressing
modes mentioned below are described in chapter “Instruction Set Summary”.

Short 4-Bit GPR Addresses (mnemonic: Rw or Rb) specify an address relative to the memory
location specified by the contents of the CP register, i.e. the base of the current register bank.
Depending on whether a relative word (Rw) or byte (Rb) GPR address is specified, the short 4-bit
GPR address is either multiplied by two or not before it is added to the content of register CP (see
figure below). Thus, both byte and word GPR accesses are possible in this way.

GPRs used as indirect address pointers are always accessed wordwise. For some instructions only
the first four GPRs can be used as indirect address pointers. These GPRs are specified via short 2-
bit GPR addresses. The respective physical address calculation is identical to that for the short 4-
bit GPR addresses.

Short 8-Bit Register Addresses (mnemonic: reg or bitoff) within a range from F0H to FFH interpret
the four least significant bits as short 4-bit GPR address, while the four most significant bits are
ignored. The respective physical GPR address calculation is identical to that for the short 4-bit GPR
addresses. For single bit accesses on a GPR, the GPR's word address is calculated as just
described, but the position of the bit within the word is specified by a separate additional 4-bit value.
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Figure 4-8
Implicit CP Use by Short GPR Addressing Modes

The Stack Pointer SP   

This non-bit addressable register is used to point to the top of the internal system stack (TOS). The
SP register is pre-decremented whenever data is to be pushed onto the stack, and it is post-
incremented whenever data is to be popped from the stack. Thus, the system stack grows from
higher toward lower memory locations.

Since the least significant bit of register SP is tied to ’0’ and bits 15 through 12 are tied to ’1’ by
hardware, the SP register can only contain values from F000H to FFFEH. This allows to access a
physical stack within the internal RAM of the C161RI. A virtual stack (usually bigger) can be realized
via software. This mechanism is supported by registers STKOV and STKUN (see respective
descriptions below).

The SP register can be updated via any instruction, which is capable of modifying an SFR.

Note: Due to the internal instruction pipeline, a POP or RETURN instruction must not immediately
follow an instruction updating the SP register.

SP (FE12H / 09H)   SFR Reset Value: FC00H  

Bit Function

sp Modifiable portion of register SP
Specifies the top of the internal system stack.

For word GPR
accessesaccesses

For byte GPR

Control

1111
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+
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The Stack Overflow Pointer STKOV   

This non-bit addressable register is compared against the SP register after each operation, which
pushes data onto the system stack (e.g. PUSH and CALL instructions or interrupts) and after each
subtraction from the SP register. If the content of the SP register is less than the content of the
STKOV register, a stack overflow hardware trap will occur.

Since the least significant bit of register STKOV is tied to ’0’ and bits 15 through 12 are tied to ’1’ by
hardware, the STKOV register can only contain values from F000H to FFFEH.

STKOV (FE14H / 0AH)   SFR Reset Value: FA00H  

The Stack Overflow Trap (entered when (SP) < (STKOV)) may be used in two different ways:

• Fatal error indication  treats the stack overflow as a system error through the associated trap
service routine. Under these circumstances data in the bottom of the stack may have been
overwritten by the status information stacked upon servicing the stack overflow trap.

• Automatic system stack flushing  allows to use the system stack as a ’Stack Cache’ for a bigger
external user stack. In this case register STKOV should be initialized to a value, which represents
the desired lowest Top of Stack address plus 12 according to the selected maximum stack size.
This considers the worst case that will occur, when a stack overflow condition is detected just during
entry into an interrupt service routine. Then, six additional stack word locations are required to push
IP, PSW, and CSP for both the interrupt service routine and the hardware trap service routine.

More details about the stack overflow trap service routine and virtual stack management are given
in chapter “System Programming”.

Bit Function

stkov Modifiable portion of register STKOV
Specifies the lower limit of the internal system stack.
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The Stack Underflow Pointer STKUN   

This non-bit addressable register is compared against the SP register after each operation, which
pops data from the system stack (e.g. POP and RET instructions) and after each addition to the SP
register. If the content of the SP register is greater than the content of the STKUN register, a stack
underflow hardware trap will occur.

Since the least significant bit of register STKUN is tied to ’0’ and bits 15 through 12 are tied to ’1’ by
hardware, the STKUN register can only contain values from F000H to FFFEH.

STKUN (FE16H / 0BH)   SFR Reset Value: FC00H  

The Stack Underflow Trap (entered when (SP) > (STKUN)) may be used in two different ways:

• Fatal error indication  treats the stack underflow as a system error through the associated trap
service routine.

• Automatic system stack refilling  allows to use the system stack as a ’Stack Cache’ for a bigger
external user stack. In this case register STKUN should be initialized to a value, which represents
the desired highest Bottom of Stack address.

More details about the stack underflow trap service routine and virtual stack management are given
in chapter “System Programming”.

Scope of Stack Limit Control

The stack limit control realized by the register pair STKOV and STKUN detects cases where the
stack pointer SP is moved outside the defined stack area either by ADD or SUB instructions or by
PUSH or POP operations (explicit or implicit, i.e. CALL or RET instructions).

This control mechanism is not triggered, i.e. no stack trap is generated, when

• the stack pointer SP is directly updated via MOV instructions
• the limits of the stack area (STKOV, STKUN) are changed, so that SP is outside of the new limits.

Bit Function

stkun Modifiable portion of register STKUN
Specifies the upper limit of the internal system stack.

1 01
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The Multiply/Divide High Register MDH   

This register is a part of the 32-bit multiply/divide register, which is implicitly used by the CPU, when
it performs a multiplication or a division. After a multiplication, this non-bit addressable register
represents the high order 16 bits of the 32-bit result. For long divisions, the MDH register must be
loaded with the high order 16 bits of the 32-bit dividend before the division is started. After any
division, register MDH represents the 16-bit remainder.

MDH (FE0CH / 06H)   SFR Reset Value: 0000H  

Whenever this register is updated via software, the Multiply/Divide Register In Use (MDRIU) flag in
the Multiply/Divide Control register (MDC) is set to ’1’.

When a multiplication or division is interrupted before its completion and when a new multiply or
divide operation is to be performed within the interrupt service routine, register MDH must be saved
along with registers MDL and MDC to avoid erroneous results.

A detailed description of how to use the MDH register for programming multiply and divide
algorithms can be found in chapter “System Programming”.

The Multiply/Divide Low Register MDL   

This register is a part of the 32-bit multiply/divide register, which is implicitly used by the CPU, when
it performs a multiplication or a division. After a multiplication, this non-bit addressable register
represents the low order 16 bits of the 32-bit result. For long divisions, the MDL register must be
loaded with the low order 16 bits of the 32-bit dividend before the division is started. After any
division, register MDL represents the 16-bit quotient.

MDL (FE0EH / 07H)   SFR Reset Value: 0000H  

Bit Function

mdh Specifies the high order 16 bits of the 32-bit multiply and divide register MD.

Bit Function

mdl Specifies the low order 16 bits of the 32-bit multiply and divide register MD.
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Whenever this register is updated via software, the Multiply/Divide Register In Use (MDRIU) flag in
the Multiply/Divide Control register (MDC) is set to ’1’. The MDRIU flag is cleared, whenever the
MDL register is read via software.

When a multiplication or division is interrupted before its completion and when a new multiply or
divide operation is to be performed within the interrupt service routine, register MDL must be saved
along with registers MDH and MDC to avoid erroneous results.

A detailed description of how to use the MDL register for programming multiply and divide
algorithms can be found in chapter “System Programming”.

The Multiply/Divide Control Register MDC   

This bit addressable 16-bit register is implicitly used by the CPU, when it performs a multiplication
or a division. It is used to store the required control information for the corresponding multiply or
divide operation. Register MDC is updated by hardware during each single cycle of a multiply or
divide instruction.

MDC (FF0EH / 87H)   SFR Reset Value: 0000H   

When a division or multiplication was interrupted before its completion and the multiply/divide unit
is required, the MDC register must first be saved along with registers MDH and MDL (to be able to
restart the interrupted operation later), and then it must be cleared prepare it for the new calculation.
After completion of the new division or multiplication, the state of the interrupted multiply or divide
operation must be restored.

The MDRIU flag is the only portion of the MDC register which might be of interest for the user. The
remaining portions of the MDC register are reserved for dedicated use by the hardware, and should
never be modified by the user in another way than described above. Otherwise, a correct
continuation of an interrupted multiply or divide operation cannot be guaranteed.

A detailed description of how to use the MDC register for programming multiply and divide
algorithms can be found in chapter “System Programming”.

Bit Function

MDRIU Multiply/Divide Register In Use
‘0’: Cleared, when register MDL is read via software.
‘1’: Set when register MDL or MDH is written via software, or when a multiply

or divide instruction is executed.

!! Internal Machine Status
The multiply/divide unit uses these bits to control internal operations.
Never modify these bits without saving and restoring register MDC.

- !!--
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- r(w)-- --

- --

-

!!!!!!!!!!!!- -
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The Constant Zeros Register ZEROS   

All bits of this bit-addressable register are fixed to ’0’ by hardware. This register can be read only.
Register ZEROS can be used as a register-addressable constant of all zeros, i.e. for bit
manipulation or mask generation. It can be accessed via any instruction, which is capable of
addressing an SFR.

ZEROS (FF1CH / 8EH)   SFR Reset Value: 0000H 

The Constant Ones Register ONES   

All bits of this bit-addressable register are fixed to ’1’ by hardware. This register can be read only.
Register ONES can be used as a register-addressable constant of all ones, i.e. for bit manipulation
or mask generation. It can be accessed via any instruction, which is capable of addressing an SFR.

ONES (FF1EH / 8FH)   SFR Reset Value: FFFFH 

0 0 000
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0000000 0
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1 1 111
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5 Interrupt and Trap Functions

The architecture of the C161RI supports several mechanisms for fast and flexible response to
service requests that can be generated from various sources internal or external to the
microcontroller. 

These mechanisms include:

   

Normal Interrupt Processing

The CPU temporarily suspends the current program execution and branches to an interrupt service
routine in order to service an interrupt requesting device. The current program status (IP, PSW, in
segmentation mode also CSP) is saved on the internal system stack. A prioritization scheme with
16 priority levels allows the user to specify the order in which multiple interrupt requests are to be
handled.

Interrupt Processing via the Peripheral Event Controller (PEC)

A faster alternative to normal software controlled interrupt processing is servicing an interrupt
requesting device with the C161RI’s integrated Peripheral Event Controller (PEC). Triggered by an
interrupt request, the PEC performs a single word or byte data transfer between any two locations
in segment 0 (data pages 0 through 3) through one of eight programmable PEC Service Channels.
During a PEC transfer the normal program execution of the CPU is halted for just 1 instruction cycle.
No internal program status information needs to be saved. The same prioritization scheme is used
for PEC service as for normal interrupt processing. PEC transfers share the 2 highest priority levels.

Trap Functions

Trap functions are activated in response to special conditions that occur during the execution of
instructions. A trap can also be caused externally by the Non-Maskable Interrupt pin NMI. Several
hardware trap functions are provided for handling erroneous conditions and exceptions that arise
during the execution of an instruction. Hardware traps always have highest priority and cause
immediate system reaction. The software trap function is invoked by the TRAP instruction, which
generates a software interrupt for a specified interrupt vector. For all types of traps the current
program status is saved on the system stack.

External Interrupt Processing

Although the C161RI does not provide dedicated interrupt pins, it allows to connect external
interrupt sources and provides several mechanisms to react on external events, including standard
inputs, non-maskable interrupts and fast external interrupts. These interrupt functions are alternate
port functions, except for the non-maskable interrupt and the reset input.
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5.1 Interrupt System Structure   

The C161RI provides 27 separate interrupt nodes that may be assigned to 16 priority levels. In order
to support modular and consistent software design techniques, most sources of an interrupt or PEC
request are supplied with a separate interrupt control register and interrupt vector. The control
register contains the interrupt request flag, the interrupt enable bit, and the interrupt priority of the
associated source. Each source request is then activated by one specific event, depending on the
selected operating mode of the respective device. For efficient usage of the resources also multi-
source interrupt nodes are incorporated. These nodes can be activated by several source requests,
e.g. as different kinds of errors in the serial interfaces. However, specific status flags which identify
the type of error are implemented in the serial channels’ control registers. Additional sharing of
interrupt nodes is supported via the interrupt subnode control register ISNC (see description below).

The C161RI provides a vectored interrupt system. In this system specific vector locations in the
memory space are reserved for the reset, trap, and interrupt service functions. Whenever a request
occurs, the CPU branches to the location that is associated with the respective interrupt source.
This allows direct identification of the source that caused the request. The only exceptions are the
class B hardware traps, which all share the same interrupt vector. The status flags in the Trap Flag
Register (TFR) can then be used to determine which exception caused the trap. For the special
software TRAP instruction, the vector address is specified by the operand field of the instruction,
which is a seven bit trap number.

The reserved vector locations build a jump table in the low end of the C161RI’s address space
(segment 0). The jump table is made up of the appropriate jump instructions that transfer control to
the interrupt or trap service routines, which may be located anywhere within the address space. The
entries of the jump table are located at the lowest addresses in code segment 0 of the address
space. Each entry occupies 2 words, except for the reset vector and the hardware trap vectors,
which occupy 4 or 8 words. 

The table below lists all sources that are capable of requesting interrupt or PEC service in the
C161RI, the associated interrupt vectors, their locations and the associated trap numbers. It also
lists the mnemonics of the affected Interrupt Request flags and their corresponding Interrupt Enable
flags. The mnemonics are composed of a part that specifies the respective source, followed by a
part that specifies their function (IR = Interrupt Request flag, IE = Interrupt Enable flag).

Note: Each entry of the interrupt vector table provides room for two word instructions or one
doubleword instruction. The respective vector location results from multiplying the trap
number by 4 (4 bytes per entry).
All interrupt nodes that are currently not used by their associated modules or are not
connected to a module in the actual derivative may be used to generate software controlled
interrupt requests by setting the respective IR flag.
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Source of Interrupt or PEC 
Service Request

Request
Flag

Enable
Flag

Interrupt
Vector

Vector
Location

Trap
Number

Fast External Interrupt 0 CC8IR CC8IE CC8INT 00’0060H 18H / 24D

Fast External Interrupt 1 CC9IR CC9IE CC9INT 00’0064H 19H / 25D

Fast External Interrupt 2 CC10IR CC10IE CC10INT 00’0068H 1AH / 26D

Fast External Interrupt 3 CC11IR CC11IE CC11INT 00’006CH 1BH / 27D

Fast External Interrupt 4 CC12IR CC12IE CC12INT 00’0070H 1CH / 28D

Fast External Interrupt 5 CC13IR CC13IE CC13INT 00’0074H 1DH / 29D

Fast External Interrupt 6 CC14IR CC14IE CC14INT 00’0078H 1EH / 30D

Fast External Interrupt 7 CC15IR CC15IE CC15INT 00’007CH 1FH / 31D

GPT1 Timer 2 T2IR T2IE T2INT 00’0088H 22H / 34D

GPT1 Timer 3 T3IR T3IE T3INT 00’008CH 23H / 35D

GPT1 Timer 4 T4IR T4IE T4INT 00’0090H 24H / 36D

GPT2 Timer 5 T5IR T5IE T5INT 00’0094H 25H / 37D

GPT2 Timer 6 T6IR T6IE T6INT 00’0098H 26H / 38D

GPT2 CAPREL Register CRIR CRIE CRINT 00’009CH 27H / 39D

A/D Conversion Complete ADCIR ADCIE ADCINT 00’00A0H 28H / 40D

A/D Overrun Error ADEIR ADEIE ADEINT 00’00A4H 29H / 41D

ASC0 Transmit S0TIR S0TIE S0TINT 00’00A8H 2AH / 42D

ASC0 Transmit Buffer S0TBIR S0TBIE S0TBINT 00’011CH 47H / 71D

ASC0 Receive S0RIR S0RIE S0RINT 00’00ACH 2BH / 43D

ASC0 Error S0EIR S0EIE S0EINT 00’00B0H 2CH / 44D

SSC Transmit SCTIR SCTIE SCTINT 00’00B4H 2DH / 45D

SSC Receive SCRIR SCRIE SCRINT 00’00B8H 2EH / 46D

SSC Error SCEIR SCEIE SCEINT 00’00BCH 2FH / 47D

I2C Data Transfer Event XP0IR XP0IE XP0INT 00’0100H 40H / 64D

I2C Protocol Event XP1IR XP1IE XP1INT 00’0104H 41H / 65D

X-Peripheral Node 2 XP2IR XP2IE XP2INT 00’0108H 42H / 66D

RTC (via ISNC) XP3IR XP3IE XP3INT 00’010CH 43H / 67D
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The table below lists the vector locations for hardware traps and the corresponding status flags in
register TFR. It also lists the priorities of trap service for cases, where more than one trap condition
might be detected within the same instruction. After any reset (hardware reset, software reset
instruction SRST, or reset by watchdog timer overflow) program execution starts at the reset vector
at location 00’0000H. Reset conditions have priority over every other system activity and therefore
have the highest priority (trap priority III).

Software traps may be initiated to any vector location between 00’0000H and 00’01FCH. A service
routine entered via a software TRAP instruction is always executed on the current CPU priority level
which is indicated in bit field ILVL in register PSW. This means that routines entered via the software
TRAP instruction can be interrupted by all hardware traps or higher level interrupt requests.

     

Exception Condition Trap
Flag

Trap
Vector

Vector
Location

Trap
Number

Trap
Priority

Reset Functions:
Hardware Reset
Software Reset
Watchdog Timer Over-
flow

RESET
RESET
RESET

00’0000H

00’0000H

00’0000H

00H

00H

00H

III
III
III

Class A Hardware Traps:
Non-Maskable Interrupt
Stack Overflow
Stack Underflow

NMI
STKOF
STKUF

NMITRAP
STOTRAP
STUTRAP

00’0008H

00’0010H

00’0018H

02H

04H

06H

II
II
II

Class B Hardware Traps:
Undefined Opcode
Protected Instruction
Fault
Illegal Word Operand
Access
Illegal Instruction Access
Illegal External Bus
Access

UNDOPC
PRTFLT

ILLOPA

ILLINA
ILLBUS

BTRAP
BTRAP

BTRAP

BTRAP
BTRAP

00’0028H

00’0028H

00’0028H

00’0028H

00’0028H

0AH

0AH

0AH

0AH

0AH

I
I

I

I
I

Reserved [2CH – 3CH] [0BH – 0FH]

Software Traps
TRAP Instruction

Any
[00’0000H – 
00’01FCH]
in steps
of 4H

Any
[00H – 7FH]

Current
CPU 
Priority
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Normal Interrupt Processing and PEC Service  

During each instruction cycle one out of all sources which require PEC or interrupt processing is
selected according to its interrupt priority. This priority of interrupts and PEC requests is
programmable in two levels. Each requesting source can be assigned to a specific priority. A
second level (called “group priority”) allows to specify an internal order for simultaneous requests
from a group of different sources on the same priority level. At the end of each instruction cycle the
one source request with the highest current priority will be determined by the interrupt system. This
request will then be serviced, if its priority is higher than the current CPU priority in register PSW.

Interrupt System Register Description

Interrupt processing is controlled globally by register PSW through a general interrupt enable bit
(IEN) and the CPU priority field (ILVL). Additionally the different interrupt sources are controlled
individually by their specific interrupt control registers (… IC). Thus, the acceptance of requests by
the CPU is determined by both the individual interrupt control registers and the PSW. PEC services
are controlled by the respective PECCx register and the source and destination pointers, which
specify the task of the respective PEC service channel.

Interrupt Control Registers

All interrupt control registers are organized identically. The lower 8 bits of an interrupt control
register contain the complete interrupt status information of the associated source, which is required
during one round of prioritization, the upper 8 bits of the respective register are reserved.. All
interrupt control registers are bit-addressable and all bits can be read or written via software. This
allows each interrupt source to be programmed or modified with just one instruction. When
accessing interrupt control registers through instructions which operate on word data types, their
upper 8 bits (15 … 8) will return zeros, when read, and will discard written data.

The layout of the Interrupt Control registers shown below applies to each xxIC register, where xx
stands for the mnemonic for the respective source.
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xxIC (yyyyH / zzH)   <SFR area> Reset Value: - - 00H  

The Interrupt Request Flag is set by hardware whenever a service request from the respective
source occurs. It is cleared automatically upon entry into the interrupt service routine or upon a PEC
service. In the case of PEC service the Interrupt Request flag remains set, if the COUNT field in
register PECCx of the selected PEC channel decrements to zero. This allows a normal CPU
interrupt to respond to a completed PEC block transfer.

Note: Modifying the Interrupt Request flag via software causes the same effects as if it had been
set or cleared by hardware.

Interrupt Priority Level and Group Level   

The four bits of bit field ILVL specify the priority level of a service request for the arbitration of
simultaneous requests. The priority increases with the numerical value of ILVL, so 0000B is the
lowest and 1111B is the highest priority level.

When more than one interrupt request on a specific level gets active at the same time, the values
in the respective bit fields GLVL are used for second level arbitration to select one request for being
serviced. Again the group priority increases with the numerical value of GLVL, so 00B is the lowest
and 11B is the highest group priority.

Note: All interrupt request sources that are enabled and programmed to the same priority level
must always be programmed to different group priorities. Otherwise an incorrect interrupt
vector will be generated.

Bit Function

GLVL Group Level
Defines the internal order for simultaneous requests of the same priority.
3: Highest group priority
0: Lowest group priority

ILVL Interrupt Priority Level
Defines the priority level for the arbitration of requests.
FH: Highest priority level
0H: Lowest priority level

xxIE Interrupt Enable Control Bit (individually enables/disables a specific source)
‘0’: Interrupt request is disabled
‘1’: Interrupt Request is enabled

xxIR Interrupt Request Flag
‘0’: No request pending
‘1’: This source has raised an interrupt request

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

xxIExxIR GLVLILVL
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Upon entry into the interrupt service routine, the priority level of the source that won the arbitration
and who’s priority level is higher than the current CPU level, is copied into bit field ILVL of register
PSW after pushing the old PSW contents on the stack.

The interrupt system of the C161RI allows nesting of up to 15 interrupt service routines of different
priority levels (level 0 cannot be arbitrated).

Interrupt requests that are programmed to priority levels 15 or 14 (i.e., ILVL = 111XB) will be
serviced by the PEC, unless the COUNT field of the associated PECC register contains zero. In this
case the request will instead be serviced by normal interrupt processing. Interrupt requests that are
programmed to priority levels 13 through 1 will always be serviced by normal interrupt processing.

Note: Priority level 0000B is the default level of the CPU. Therefore a request on level 0 will never
be serviced, because it can never interrupt the CPU. However, an enabled interrupt request
on level 0000B will terminate the C161RI’s Idle mode and reactivate the CPU.

For interrupt requests which are to be serviced by the PEC, the associated PEC channel number is
derived from the respective ILVL (LSB) and GLVL (see figure below). So programming a source to
priority level 15 (ILVL = 1111B) selects the PEC channel group 7 … 4, programming a source to
priority level 14 (ILVL = 1110B) selects the PEC channel group 3 … 0. The actual PEC channel
number is then determined by the group priority field GLVL.

   

Figure 5-1
Priority Levels and PEC Channels

Simultaneous requests for PEC channels are prioritized according to the PEC channel number,
where channel 0 has lowest and channel 8 has highest priority.

Note: All sources that request PEC service must be programmed to different PEC channels.
Otherwise an incorrect PEC channel may be activated.

Interrupt
Control Register

PEC Control PEC Channel #

GLVLILVL
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The table below shows in a few examples, which action is executed with a given programming of an
interrupt control register.

   

Note: All requests on levels 13 … 1 cannot initiate PEC transfers. They are always serviced by an
interrupt service routine. No PECC register is associated and no COUNT field is checked.

Interrupt Control Functions in the PSW   

The Processor Status Word (PSW) is functionally divided into 2 parts: the lower byte of the PSW
basically represents the arithmetic status of the CPU, the upper byte of the PSW controls the
interrupt system of the C161RI and the arbitration mechanism for the external bus interface.

Note: Pipeline effects have to be considered when enabling/disabling interrupt requests via
modifications of register PSW (see chapter “The Central Processing Unit”).

Priority Level Type of Service

ILVL GLVL COUNT = 00H COUNT ≠ 00H

1 1 1 1 1 1 CPU interrupt,
level 15, group priority 3

PEC service,
channel 7

1 1 1 1 1 0 CPU interrupt,
level 15, group priority 2

PEC service,
channel 6

1 1 1 0 1 0 CPU interrupt,
level 14, group priority 2

PEC service,
channel 2

1 1 0 1 1 0 CPU interrupt,
level 13, group priority 2

CPU interrupt,
level 13, group priority 2

0 0 0 1 1 1 CPU interrupt,
level 1, group priority 3

CPU interrupt,
level 1, group priority 3

0 0 0 1 0 0 CPU interrupt,
level 1, group priority 0

CPU interrupt,
level 1, group priority 0

0 0 0 0 X X No service! No service!
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PSW (FF10H / 88H)   SFR Reset Value: 0000H  

CPU Priority ILVL defines the current level for the operation of the CPU. This bit field reflects the
priority level of the routine that is currently executed. Upon the entry into an interrupt service routine
this bit field is updated with the priority level of the request that is being serviced. The PSW is saved
on the system stack before. The CPU level determines the minimum interrupt priority level that will
be serviced. Any request on the same or a lower level will not be acknowledged.
The current CPU priority level may be adjusted via software to control which interrupt request
sources will be acknowledged.

PEC transfers do not really interrupt the CPU, but rather “steal” a single cycle, so PEC services do
not influence the ILVL field in the PSW.

Hardware traps switch the CPU level to maximum priority (i.e. 15) so no interrupt or PEC requests
will be acknowledged while an exception trap service routine is executed.

Note: The TRAP instruction does not change the CPU level, so software invoked trap service
routines may be interrupted by higher requests.

Interrupt Enable bit IEN globally enables or disables PEC operation and the acceptance of
interrupts by the CPU. When IEN is cleared, no new interrupt requests are accepted by the CPU.
Requests that already have entered the pipeline at that time will process, however. When IEN is set
to '1', all interrupt sources, which have been individually enabled by the interrupt enable bits in their
associated control registers, are globally enabled.

Note: Traps are non-maskable and are therefore not affected by the IEN bit.

Bit Function

N, C, V, Z, E, 
MULIP, USR0

CPU status flags (Described in section “The Central Processing Unit”)
Define the current status of the CPU (ALU, multiplication unit).

HLDEN HOLD Enable (Enables External Bus Arbitration)
0: Bus arbitration disabled, P6.7 … P6.5 may be used for general purpose IO
1: Bus arbitration enabled, P6.7 … P6.5 serve as BREQ, HLDA, HOLD, resp.

ILVL CPU Priority Level
Defines the current priority level for the CPU
FH: Highest priority level
0H: Lowest priority level

IEN Interrupt Enable Control Bit (globally enables/disables interrupt requests)
‘0’: Interrupt requests are disabled
‘1’: Interrupt requests are enabled

HLD
EN -

MUL
IPUSR0 NZ CVE

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw- rw rw rw-rw -rw

IEN --ILVL

rw
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5.2 Operation of the PEC Channels   

The C161RI’s Peripheral Event Controller (PEC) provides 8 PEC service channels, which move a
single byte or word between two locations in segment 0 (data pages 3 … 0). This is the fastest
possible interrupt response and in many cases is sufficient to service the respective peripheral
request (e.g. serial channels, etc.). Each channel is controlled by a dedicated PEC Channel
Counter/Control register (PECCx) and a pair of pointers for source (SRCPx) and destination
(DSTPx) of the data transfer.

The PECC registers control the action that is performed by the respective PEC channel.

PECCx (FECyH / 6zH, see table)   SFR Reset Value: 0000H  

PEC Control Register Addresses   

Byte/Word Transfer bit BWT controls, if a byte or a word is moved during a PEC service cycle.
This selection controls the transferred data size and the increment step for the modified pointer.

Bit Function

COUNT PEC Transfer Count
Counts PEC transfers and influences the channel’s action (see table below)

BWT Byte / Word Transfer Selection
0: Transfer a Word
1: Transfer a Byte

INC Increment Control (Modification of SRCPx or DSTPx)
0 0: Pointers are not modified
0 1: Increment DSTPx by 1 or 2 (BWT)
1 0: Increment SRCPx by 1 or 2 (BWT)
1 1: Reserved. Do not use this combination. (changed to 10 by hardware)

Register Address Reg. Space Register Address Reg. Space

PECC0 FEC0H / 60H SFR PECC4 FEC8H / 64H SFR

PECC1 FEC2H / 61H SFR PECC5 FECAH / 65H SFR

PECC2 FEC4H / 62H SFR PECC6 FECCH / 66H SFR

PECC3 FEC6H / 63H SFR PECC7 FECEH / 67H SFR

--

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rwrwrw

- BWT

-----

-- INC COUNT
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Increment Control Field INC controls, if one of the PEC pointers is incremented after the PEC
transfer. It is not possible to increment both pointers, however. If the pointers are not modified
(INC = ’00’), the respective channel will always move data from the same source to the same
destination.

Note: The reserved combination ‘11’ is changed to ‘10’ by hardware. However, it is not
recommended to use this combination.

The PEC Transfer Count Field COUNT controls the action of a respective PEC channel, where the
content of bit field COUNT at the time the request is activated selects the action. COUNT may allow
a specified number of PEC transfers, unlimited transfers or no PEC service at all.

The table below summarizes, how the COUNT field itself, the interrupt requests flag IR and the PEC
channel action depends on the previous content of COUNT.

   

The PEC transfer counter allows to service a specified number of requests by the respective PEC
channel, and then (when COUNT reaches 00H) activate the interrupt service routine, which is
associated with the priority level. After each PEC transfer the COUNT field is decremented and the
request flag is cleared to indicate that the request has been serviced.

Continuous transfers are selected by the value FFH in bit field COUNT. In this case COUNT is not
modified and the respective PEC channel services any request until it is disabled again.

When COUNT is decremented from 01H to 00H after a transfer, the request flag is not cleared, which
generates another request from the same source. When COUNT already contains the value 00H,
the respective PEC channel remains idle and the associated interrupt service routine is activated
instead. This allows to choose, if a level 15 or 14 request is to be serviced by the PEC or by the
interrupt service routine.

Note: PEC transfers are only executed, if their priority level is higher than the CPU level, i.e. only
PEC channels 7 … 4 are processed, while the CPU executes on level 14.
All interrupt request sources that are enabled and programmed for PEC service should use
different channels. Otherwise only one transfer will be performed for all simultaneous
requests. When COUNT is decremented to 00H, and the CPU is to be interrupted, an
incorrect interrupt vector will be generated.

Previous
 COUNT

Modified 
COUNT

IR after 
PEC service

Action of PEC Channel
and Comments

FFH FFH ‘0’ Move a Byte / Word
Continuous transfer mode, i.e. COUNT is not modified

FEH..02H FDH..01H ‘0’ Move a Byte / Word and decrement COUNT

01H 00H ‘1’ Move a Byte / Word
Leave request flag set, which triggers another request

00H 00H (‘1’) No action!
Activate interrupt service routine rather than PEC channel.
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The source and destination pointers specify the locations between which the data is to be
moved. A pair of pointers (SRCPx and DSTPx) is associated with each of the 8 PEC channels.
These pointers do not reside in specific SFRs, but are mapped into the internal RAM of the C161RI
just below the bit-addressable area (see figure below).

   

Figure 5-2
Mapping of PEC Pointers into the Internal RAM

PEC data transfers do not use the data page pointers DPP3 … DPP0. The PEC source and
destination pointers are used as 16-bit intra-segment addresses within segment 0, so data can be
transferred between any two locations within the first four data pages 3 … 0.

The pointer locations for inactive PEC channels may be used for general data storage. Only the
required pointers occupy RAM locations.

Note: If word data transfer is selected for a specific PEC channel (i.e. BWT = ’0’), the respective
source and destination pointers must both contain a valid word address which points to an
even byte boundary. Otherwise the Illegal Word Access trap will be invoked, when this
channel is used.

DSTP7 00’FCFEH

SRCP7 00’FCFCH

DSTP6 00’FCFAH

SRCP6 00’FCF8H

DSTP5 00’FCF6H

SRCP5 00’FCF4H

DSTP4 00’FCF2H

SRCP4 00’FCF0H

DSTP3 00’FCEEH

SRCP3 00’FCECH

DSTP2 00’FCEAH

SRCP2 00’FCE8H

DSTP1 00’FCE6H

SRCP1 00’FCE4H

DSTP0 00’FCE2H

SRCP0 00’FCE0H
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5.3 Prioritization of Interrupt and PEC Service Requests

Interrupt and PEC service requests from all sources can be enabled, so they are arbitrated and
serviced (if they win), or they may be disabled, so their requests are disregarded and not serviced.

Enabling and disabling interrupt requests may be done via three mechanisms:

   

Control Bits allow to switch each individual source “ON” or “OFF”, so it may generate a request or
not. The control bits (xxIE) are located in the respective interrupt control registers. All interrupt
requests may be enabled or disabled generally via bit IEN in register PSW. This control bit is the
“main switch” that selects, if requests from any source are accepted or not.
For a specific request to be arbitrated the respective source’s enable bit and the global enable bit
must both be set.

The Priority Level automatically selects a certain group of interrupt requests that will be
acknowledged, disclosing all other requests. The priority level of the source that won the arbitration
is compared against the CPU’s current level and the source is only serviced, if its level is higher than
the current CPU level. Changing the CPU level to a specific value via software blocks all requests
on the same or a lower level. An interrupt source that is assigned to level 0 will be disabled and
never be serviced.

The ATOMIC and EXTend instructions automatically disable all interrupt requests for the duration
of the following 1 … 4 instructions. This is useful e.g. for semaphore handling and does not require
to re-enable the interrupt system after the unseparable instruction sequence (see chapter “System
Programming”).

Interrupt Class Management

An interrupt class covers a set of interrupt sources with the same importance, i.e. the same priority
from the system’s viewpoint. Interrupts of the same class must not interrupt each other. The C161RI
supports this function with two features:

Classes with up to 4 members can be established by using the same interrupt priority (ILVL) and
assigning a dedicated group level (GLVL) to each member. This functionality is built-in and handled
automatically by the interrupt controller.

Classes with more than 4 members can be established by using a number of adjacent interrupt
priorities (ILVL) and the respective group levels (4 per ILVL). Each interrupt service routine within
this class sets the CPU level to the highest interrupt priority within the class. All requests from the
same or any lower level are blocked now, i.e. no request of this class will be accepted.

The example below establishes 3 interrupt classes which cover 2 or 3 interrupt priorities, depending
on the number of members in a class. A level 6 interrupt disables all other sources in class 2 by
changing the current CPU level to 8, which is the highest priority (ILVL) in class 2. Class 1 requests
or PEC requests are still serviced in this case.

The 24 interrupt sources (excluding PEC requests) are so assigned to 3 classes of priority rather
than to 7 different levels, as the hardware support would do.
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Software controlled Interrupt Classes (Example)  

5.4 Saving the Status during Interrupt Service

Before an interrupt request that has been arbitrated is actually serviced, the status of the current
task is automatically saved on the system stack. The CPU status (PSW) is saved along with the
location, where the execution of the interrupted task is to be resumed after returning from the
service routine. This return location is specified through the Instruction Pointer (IP) and, in case of
a segmented memory model, the Code Segment Pointer (CSP). Bit SGTDIS in register SYSCON
controls, how the return location is stored.

The system stack receives the PSW first, followed by the IP (unsegmented) or followed by CSP and
then IP (segmented mode). This optimizes the usage of the system stack, if segmentation is
disabled.

The CPU priority field (ILVL in PSW) is updated with the priority of the interrupt request that is to be
serviced, so the CPU now executes on the new level. If a multiplication or division was in progress
at the time the interrupt request was acknowledged, bit MULIP in register PSW is set to ‘1’. In this
case the return location that is saved on the stack is not the next instruction in the instruction flow,
but rather the multiply or divide instruction itself, as this instruction has been interrupted and will be
completed after returning from the service routine.

ILVL
(Priority)

GLVL Interpretation

3 2 1 0

15 PEC service on up to 8 channels

14

13

12 X X X X Interrupt Class 1
5 sources on 2 levels11 X

10

9

8 X X X X Interrupt Class 2
9 sources on 3 levels7 X X X X

6 X

5 X X X X Interrupt Class 3
5 sources on 2 levels4 X

3

2

1

0 No service!
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Figure 5-3
Task Status saved on the System Stack

The interrupt request flag of the source that is being serviced is cleared. The IP is loaded with the
vector associated with the requesting source (the CSP is cleared in case of segmentation) and the
first instruction of the service routine is fetched from the respective vector location, which is
expected to branch to the service routine itself. The data page pointers and the context pointer are
not affected.

When the interrupt service routine is left (RETI is executed), the status information is popped from
the system stack in the reverse order, taking into account the value of bit SGTDIS.

Context Switching   

An interrupt service routine usually saves all the registers it uses on the stack, and restores them
before returning. The more registers a routine uses, the more time is wasted with saving and
restoring. The C161RI allows to switch the complete bank of CPU registers (GPRs) with a single
instruction, so the service routine executes within its own, separate context.

The instruction “SCXT CP, #New_Bank” pushes the content of the context pointer (CP) on the
system stack and loads CP with the immediate value “New_Bank”, which selects a new register
bank. The service routine may now use its “own registers”. This register bank is preserved, when
the service routine terminates, i.e. its contents are available on the next call.
Before returning (RETI) the previous CP is simply POPped from the system stack, which returns the
registers to the original bank.

Note: The first instruction following the SCXT instruction must not use a GPR.

Resources that are used by the interrupting program must eventually be saved and restored, e.g.
the DPPs and the registers of the MUL/DIV unit.

(Unsegmented)

PSW

System Stack after
Interrupt EntryInterrupt Entry

System Stack beforea) b)

SP

High
Addresses

Low
Addresses

--

--

--

SP IP

--

MCD02226

b)
Interrupt Entry
System Stack after

(Segmented)

Task
Interrupted
Status of

CSP

PSW

IP SP
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5.5 Interrupt Response Times   

The interrupt response time defines the time from an interrupt request flag of an enabled interrupt
source being set until the first instruction (I1) being fetched from the interrupt vector location. The
basic interrupt response time for the C161RI is 3 instruction cycles.

   

Figure 5-4
Pipeline Diagram for Interrupt Response Time

All instructions in the pipeline including instruction N (during which the interrupt request flag is set)
are completed before entering the service routine. The actual execution time for these instructions
(e.g. waitstates) therefore influences the interrupt response time.

In the figure above the respective interrupt request flag is set in cycle 1 (fetching of instruction N).
The indicated source wins the prioritization round (during cycle 2). In cycle 3 a TRAP instruction is
injected into the decode stage of the pipeline, replacing instruction N + 1 and clearing the source’s
interrupt request flag to ’0’. Cycle 4 completes the injected TRAP instruction (save PSW, IP and
CSP, if segmented mode) and fetches the first instruction (I1) from the respective vector location.

All instructions that entered the pipeline after setting of the interrupt request flag (N + 1, N + 2) will
be executed after returning from the interrupt service routine.

The minimum interrupt response time is 5 states (10 TCL). This requires program execution from
the internal code memory, no external operand read requests and setting the interrupt request flag
during the last state of an instruction cycle. When the interrupt request flag is set during the first
state of an instruction cycle, the minimum interrupt response time under these conditions is 6 state
times (12 TCL).

The interrupt response time is increased by all delays of the instructions in the pipeline that are
executed before entering the service routine (including N).

  

Pipeline Stage Cycle 1 Cycle 2 Cycle 3 Cycle 4

FETCH N N + 1 N + 2 I1

DECODE N - 1 N TRAP (1) TRAP (2)

EXECUTE N - 2 N - 1 N TRAP

WRITEBACK N - 3 N - 2 N - 1 N

Interrupt Response Time

1
0

IR-Flag
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• When internal hold conditions between instruction pairs N-2/N-1 or N-1/N occur, or instruction N
explicitly writes to the PSW or the SP, the minimum interrupt response time may be extended by 1
state time for each of these conditions.

• When instruction N reads an operand from the internal code memory, or when N is a call, return,
trap, or MOV Rn, [Rm+ #data16] instruction, the minimum interrupt response time may additionally
be extended by 2 state times during internal code memory program execution.

• In case instruction N reads the PSW and instruction N-1 has an effect on the condition flags, the
interrupt response time may additionally be extended by 2 state times.

The worst case interrupt response time during internal code memory program execution adds to 12
state times (24 TCL).

Any reference to external locations increases the interrupt response time due to pipeline related
access priorities. The following conditions have to be considered:

• Instruction fetch from an external location
• Operand read from an external location
• Result write-back to an external location

Depending on where the instructions, source and destination operands are located, there are a
number of combinations. Note, however, that only access conflicts contribute to the delay.

A few examples illustrate these delays:

• The worst case interrupt response time including external accesses will occur, when instructions
N, N + 1 and N + 2 are executed out of external memory, instructions N-1 and N require external
operand read accesses, instructions N-3 through N write back external operands, and the interrupt
vector also points to an external location. In this case the interrupt response time is the time to
perform 9 word bus accesses, because instruction I1 cannot be fetched via the external bus until all
write, fetch and read requests of preceding instructions in the pipeline are terminated.

• When the above example has the interrupt vector pointing into the internal code memory, the
interrupt response time is 7 word bus accesses plus 2 states, because fetching of instruction I1 from
internal code memory can start earlier.

• When instructions N, N + 1 and N + 2 are executed out of external memory and the interrupt vector
also points to an external location, but all operands for instructions N-3 through N are in internal
memory, then the interrupt response time is the time to perform 3 word bus accesses.

• When the above example has the interrupt vector pointing into the internal code memory, the
interrupt response time is 1 word bus access plus 4 states.

After an interrupt service routine has been terminated by executing the RETI instruction, and if
further interrupts are pending, the next interrupt service routine will not be entered until at least two
instruction cycles have been executed of the program that was interrupted. In most cases two
instructions will be executed during this time. Only one instruction will typically be executed, if the
first instruction following the RETI instruction is a branch instruction (without cache hit), or if it reads
an operand from internal code memory, or if it is executed out of the internal RAM.

Note: A bus access in this context includes all delays which can occur during an external bus cycle.
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PEC Response Times   

The PEC response time defines the time from an interrupt request flag of an enabled interrupt
source being set until the PEC data transfer being started. The basic PEC response time for the
C161RI is 2 instruction cycles.

   

Figure 5-5
Pipeline Diagram for PEC Response Time

In the figure above the respective interrupt request flag is set in cycle 1 (fetching of instruction N).
The indicated source wins the prioritization round (during cycle 2). In cycle 3 a PEC transfer
“instruction” is injected into the decode stage of the pipeline, suspending instruction N + 1 and
clearing the source's interrupt request flag to '0'. Cycle 4 completes the injected PEC transfer and
resumes the execution of instruction N + 1.

All instructions that entered the pipeline after setting of the interrupt request flag (N + 1, N + 2) will
be executed after the PEC data transfer.

Note: When instruction N reads any of the PEC control registers PECC7 … PECC0, while a PEC
request wins the current round of prioritization, this round is repeated and the PEC data
transfer is started one cycle later.

The minimum PEC response time is 3 states (6 TCL). This requires program execution from the
internal code memory, no external operand read requests and setting the interrupt request flag
during the last state of an instruction cycle. When the interrupt request flag is set during the first
state of an instruction cycle, the minimum PEC response time under these conditions is 4 state
times (8 TCL).

  

Pipeline Stage Cycle 1 Cycle 2 Cycle 3 Cycle 4

FETCH N N + 1 N + 2 N + 2

DECODE N - 1 N PEC N + 1

EXECUTE N - 2 N - 1 N PEC

WRITEBACK N - 3 N - 2 N - 1 N

PEC Response Time

1
0

IR-Flag
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The PEC response time is increased by all delays of the instructions in the pipeline that are
executed before starting the data transfer (including N).

• When internal hold conditions between instruction pairs N-2/N-1 or N-1/N occur, the minimum
PEC response time may be extended by 1 state time for each of these conditions.

• When instruction N reads an operand from the internal code memory, or when N is a call, return,
trap, or MOV Rn, [Rm+ #data16] instruction, the minimum PEC response time may additionally be
extended by 2 state times during internal code memory program execution.

• In case instruction N reads the PSW and instruction N-1 has an effect on the condition flags, the
PEC response time may additionally be extended by 2 state times.

The worst case PEC response time during internal code memory program execution adds to 9 state
times (18 TCL).

Any reference to external locations increases the PEC response time due to pipeline related access
priorities. The following conditions have to be considered:

• Instruction fetch from an external location
• Operand read from an external location
• Result write-back to an external location

Depending on where the instructions, source and destination operands are located, there are a
number of combinations. Note, however, that only access conflicts contribute to the delay.

A few examples illustrate these delays:

• The worst case interrupt response time including external accesses will occur, when instructions
N and N + 1 are executed out of external memory, instructions N-1 and N require external operand
read accesses and instructions N-3, N-2 and N-1 write back external operands. In this case the PEC
response time is the time to perform 7 word bus accesses.

• When instructions N and N + 1 are executed out of external memory, but all operands for
instructions N-3 through N-1 are in internal memory, then the PEC response time is the time to
perform 1 word bus access plus 2 state times.

Once a request for PEC service has been acknowledged by the CPU, the execution of the next
instruction is delayed by 2 state times plus the additional time it might take to fetch the source
operand from internal code memory or external memory and to write the destination operand over
the external bus in an external program environment.

Note: A bus access in this context includes all delays which can occur during an external bus cycle.
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Interrupt Node Sharing   

Interrupt nodes may be shared between several module requests either if the requests are
generated mutually exclusive or if the requests are generated at a low rate. If more than one source
is enabled in this case the interrupt handler will first have to determine the requesting source.
However, this overhead is not critical for low rate requests.

This node sharing is controlled via the sub-node interrupt control register ISNC which provides a
separate request flag and enable bit for each supported request source. The interrupt level used for
arbitration is determined by the node control register (… IC).

ISNC (F1DEH / EFH)   ESFR  Reset Value: 0000H  

   

Note: In order to ensure compatibility with other derivatives application software should never set
reserved bits within register ISNC.
Bits PLLIE and PLLIR are not implemented, but reserved for compatibility with devices
providing a PLL.

Bit Function

xxIR Interrupt Request Flag for Source xx
0: No request from source xx pending.
1: Source xx has raised an interrupt request.

xxIE Interrupt Enable Control Bit for Source xx
0: Source xx interrupt request is disabled.
1: Source xx interrupt request is enabled.

Sub-node Control Bit Allocation

Bit pos. Interrupt Source Associated Node

15 … 4 Reserved. Reserved.

3|2 Reserved for PLL / OWD XP3IC

1|0 RTC XP3IC

- -
RTC
IR--

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- --- --

- --

-

RTC
IE

PLL
IR

PLL
IE---- -

- - - - - rw rw rw rw
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5.6 External Interrupts   

Although the C161RI has no dedicated INTR input pins, it provides many possibilities to react on
external asynchronous events by using a number of IO lines for interrupt input. The interrupt
function may either be combined with the pin’s main function or may be used instead of it, i.e. if the
main pin function is not required.

Interrupt signals may be connected to:

• EX7IN … EX0IN, the fast external interrupt input pins,
• T4IN, T2IN, the timer input pins
• CAPIN, the capture input of GPT2

For each of these pins either a positive, a negative, or both a positive and a negative external
transition can be selected to cause an interrupt or PEC service request. The edge selection is
performed in the control register of the peripheral device associated with the respective port pin.
The peripheral must be programmed to a specific operating mode to allow generation of an interrupt
by the external signal. The priority of the interrupt request is determined by the interrupt control
register of the respective peripheral interrupt source, and the interrupt vector of this source will be
used to service the external interrupt request.

Note: In order to use any of the listed pins as external interrupt input, it must be switched to input
mode via its direction control bit DPx.y in the respective port direction control register DPx.

   

Pins T2IN or T4IN can be used as external interrupt input pins when the associated auxiliary timer
T2 or T4 in block GPT1 is configured for capture mode. This mode is selected by programming the
mode control fields T2M or T4M in control registers T2CON or T4CON to 101B. The active edge of
the external input signal is determined by bit fields T2I or T4I. When these fields are programmed
to X01B, interrupt request flags T2IR or T4IR in registers T2IC or T4IC will be set on a positive
external transition at pins T2IN or T4IN, respectively. When T2I or T4I are programmed to X10B,
then a negative external transition will set the corresponding request flag. When T2I or T4I are
programmed to X11B, both a positive and a negative transition will set the request flag. In all three
cases, the contents of the core timer T3 will be captured into the auxiliary timer registers T2 or T4
based on the transition at pins T2IN or T4IN. When the interrupt enable bits T2IE or T4IE are set,
a PEC request or an interrupt request for vector T2INT or T4INT will be generated.

Pins to be used as External Interrupt Inputs

Port Pin Original Function Control Register

P2.15-8/EX7-0IN Fast external interrupt input pin EXICON

P3.7/T2IN Auxiliary timer T2 input pin T2CON

P3.5/T4IN Auxiliary timer T4 input pin T4CON

P3.2/CAPIN GPT2 capture input pin T5CON
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Pin CAPIN differs slightly from the timer input pins as it can be used as external interrupt input pin
without affecting peripheral functions. When the capture mode enable bit T5SC in register T5CON
is cleared to ’0’, signal transitions on pin CAPIN will only set the interrupt request flag CRIR in
register CRIC, and the capture function of register CAPREL is not activated.

So register CAPREL can still be used as reload register for GPT2 timer T5, while pin CAPIN serves
as external interrupt input. Bit field CI in register T5CON selects the effective transition of the
external interrupt input signal. When CI is programmed to 01B, a positive external transition will set
the interrupt request flag. CI = 10B selects a negative transition to set the interrupt request flag, and
with CI = 11B, both a positive and a negative transition will set the request flag. When the interrupt
enable bit CRIE is set, an interrupt request for vector CRINT or a PEC request will be generated.

Note: The non-maskable interrupt input pin NMI and the reset input RSTIN provide another
possibility for the CPU to react on an external input signal. NMI and RSTIN are dedicated
input pins, which cause hardware traps.

Fast External Interrupts   

The input pins that may be used for external interrupts are sampled every 16 TCL, i.e. external
events are scanned and detected in timeframes of 16 TCL. The C161RI provides 8 interrupt inputs
that are sampled every 2 TCL, so external events are captured faster than with standard interrupt
inputs.

The8 pins of Port 2 (P2.15-P2.8) can individually be programmed to this fast interrupt mode, where
also the trigger transition (rising, falling or both) can be selected. The External Interrupt Control
register EXICON controls this feature for all 8 pins.   

EXICON (F1C0H / E0H)   ESFR Reset Value: 0000H  

Note: The fast external interrupt inputs are sampled every 2 TCL. The interrupt request arbitration
and processing, however, is executed every 8 TCL.

Bit Function

EXIxES External Interrupt x Edge Selection Field (x = 7 … 0)
0 0: Fast external interrupts disabled: standard mode
0 1: Interrupt on positive edge (rising)
1 0: Interrupt on negative edge (falling)
1 1: Interrupt on any edge (rising or falling)

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rwrwrw

EXI2ES EXI0ESEXI1ES

rwrwrw

EXI7ES EXI5ESEXI6ES

rwrw

EXI3ESEXI4ES
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The interrupt control registers listed below (CC15IC … CC8IC) control the fast external interrupts of
the C161RI. These fast external interrupt nodes and vectors are named according to the C167’s
CAPCOM channels CC15 … CC8, so interrupt nodes receive equal names throughout the
architecture. See register description below.

CCxIC (See Table)   SFR Reset Value: - - 00H  

Note: Please refer to the general Interrupt Control Register description for an explanation of the
control fields.

Fast External Interrupt Control Register Addresses   

Register Address External Interrupt

CC8IC FF88H / C4H EX0IN

CC9IC FF8AH / C5H EX1IN

CC10IC FF8CH / C6H EX2IN

CC11IC FF8EH / C7H EX3IN

CC12IC FF90H / C8H EX4IN

CC13IC FF92H / C9H EX5IN

CC14IC FF94H / CAH EX6IN

CC15IC FF96H / CBH EX7IN

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

CCx
IE

CCx
IR ILVL GLVL
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5.7 Trap Functions   

Traps interrupt the current execution similar to standard interrupts. However, trap functions offer the
possibility to bypass the interrupt system’s prioritization process in cases where immediate system
reaction is required. Trap functions are not maskable and always have priority over interrupt
requests on any priority level.

The C161RI provides two different kinds of trapping mechanisms. Hardware traps are triggered by
events that occur during program execution (e.g. illegal access or undefined opcode), software
traps are initiated via an instruction within the current execution flow.

Software Traps   

The TRAP instruction is used to cause a software call to an interrupt service routine. The trap
number that is specified in the operand field of the trap instruction determines which vector location
in the address range from 00’0000H through 00’01FCH will be branched to.

Executing a TRAP instruction causes a similar effect as if an interrupt at the same vector had
occurred. PSW, CSP (in segmentation mode), and IP are pushed on the internal system stack and
a jump is taken to the specified vector location. When segmentation is enabled and a trap is
executed, the CSP for the trap service routine is set to code segment 0. No Interrupt Request flags
are affected by the TRAP instruction. The interrupt service routine called by a TRAP instruction
must be terminated with a RETI (return from interrupt) instruction to ensure correct operation.

Note: The CPU level in register PSW is not modified by the TRAP instruction, so the service routine
is executed on the same priority level from which it was invoked. Therefore, the service
routine entered by the TRAP instruction can be interrupted by other traps or higher priority
interrupts, other than when triggered by a hardware trap.

Hardware Traps   

Hardware traps are issued by faults or specific system states that occur during runtime of a program
(not identified at assembly time). A hardware trap may also be triggered intentionally, e.g. to
emulate additional instructions by generating an Illegal Opcode trap. The C161RI distinguishes
eight different hardware trap functions. When a hardware trap condition has been detected, the
CPU branches to the trap vector location for the respective trap condition. Depending on the trap
condition, the instruction which caused the trap is either completed or cancelled (i.e. it has no effect
on the system state) before the trap handling routine is entered.

Hardware traps are non-maskable and always have priority over every other CPU activity. If several
hardware trap conditions are detected within the same instruction cycle, the highest priority trap is
serviced (see table in section “Interrupt System Structure”).

PSW, CSP (in segmentation mode), and IP are pushed on the internal system stack and the CPU
level in register PSW is set to the highest possible priority level (i.e. level 15), disabling all interrupts.
The CSP is set to code segment zero, if segmentation is enabled. A trap service routine must be
terminated with the RETI instruction.
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The eight hardware trap functions of the C161RI are divided into two classes:

Class A traps are
• external Non-Maskable Interrupt (NMI)
• Stack Overflow
• Stack Underflow trap
These traps share the same trap priority, but have an individual vector address.

Class B traps are
• Undefined Opcode
• Protection Fault
• Illegal Word Operand Access
• Illegal Instruction Access
• Illegal External Bus Access Trap
These traps share the same trap priority, and the same vector address.

The bit-addressable Trap Flag Register (TFR) allows a trap service routine to identify the kind of
trap which caused the exception. Each trap function is indicated by a separate request flag. When
a hardware trap occurs, the corresponding request flag in register TFR is set to '1'.   

TFR (FFACH / D6H)   SFR Reset Value: 0000H  

Bit Function

ILLBUS Illegal External Bus Access Flag
An external access has been attempted with no external bus defined.

ILLINA Illegal Instruction Access Flag
A branch to an odd address has been attempted.

ILLOPA Illegal Word Operand Access Flag
A word operand access (read or write) to an odd address has been attempted.

PRTFLT Protection Fault Flag
A protected instruction with an illegal format has been detected.

UNDOPC Undefined Opcode Flag
The currently decoded instruction has no valid C161RI opcode.

STKUF Stack Underflow Flag
The current stack pointer value exceeds the content of register STKUN.

STKOF Stack Overflow Flag
The current stack pointer value falls below the content of register STKOV.

NMI Non Maskable Interrupt Flag
A negative transition (falling edge) has been detected on pin NMI.

NMI

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rwrw - - --rw ---

STK
UF

ILL
BUS

ILL
INA

ILL
OPA

PRT
FLT

UND
OPC

STK
OF - - - - - - --

-rwrw
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Note: The trap service routine must clear the respective trap flag, otherwise a new trap will be
requested after exiting the service routine. Setting a trap request flag by software causes the
same effects as if it had been set by hardware.

The reset functions (hardware, software, watchdog) may be regarded as a type of trap. Reset
functions have the highest system priority (trap priority III).

Class A traps have the second highest priority (trap priority II), on the 3rd rank are class B traps, so
a class A trap can interrupt a class B trap. If more than one class A trap occur at a time, they are
prioritized internally, with the NMI trap on the highest and the stack underflow trap on the lowest
priority.

All class B traps have the same trap priority (trap priority I). When several class B traps get active
at a time, the corresponding flags in the TFR register are set and the trap service routine is entered.
Since all class B traps have the same vector, the priority of service of simultaneously occurring class
B traps is determined by software in the trap service routine.

A class A trap occurring during the execution of a class B trap service routine will be serviced
immediately. During the execution of a class A trap service routine, however, any class B trap
occurring will not be serviced until the class A trap service routine is exited with a RETI instruction.
In this case, the occurrence of the class B trap condition is stored in the TFR register, but the IP
value of the instruction which caused this trap is lost.

In the case where e.g. an Undefined Opcode trap (class B) occurs simultaneously with an NMI trap
(class A), both the NMI and the UNDOPC flag is set, the IP of the instruction with the undefined
opcode is pushed onto the system stack, but the NMI trap is executed. After return from the NMI
service routine, the IP is popped from the stack and immediately pushed again because of the
pending UNDOPC trap.

External NMI Trap   

Whenever a high to low transition on the dedicated external NMI pin (Non-Maskable Interrupt) is
detected, the NMI flag in register TFR is set and the CPU will enter the NMI trap routine. The IP
value pushed on the system stack is the address of the instruction following the one after which
normal processing was interrupted by the NMI trap.

Note: The NMI pin is sampled with every CPU clock cycle to detect transitions.

Stack Overflow Trap

Whenever the stack pointer is decremented to a value which is less than the value in the stack
overflow register STKOV, the STKOF flag in register TFR is set and the CPU will enter the stack
overflow trap routine. Which IP value will be pushed onto the system stack depends on which
operation caused the decrement of the SP. When an implicit decrement of the SP is made through
a PUSH or CALL instruction, or upon interrupt or trap entry, the IP value pushed is the address of
the following instruction. When the SP is decremented by a subtract instruction, the IP value pushed
represents the address of the instruction after the instruction following the subtract instruction.

For recovery from stack overflow it must be ensured that there is enough excess space on the stack
for saving the current system state (PSW, IP, in segmented mode also CSP) twice. Otherwise, a
system reset should be generated.
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Stack Underflow Trap

Whenever the stack pointer is incremented to a value which is greater than the value in the stack
underflow register STKUN, the STKUF flag is set in register TFR and the CPU will enter the stack
underflow trap routine. Again, which IP value will be pushed onto the system stack depends on
which operation caused the increment of the SP. When an implicit increment of the SP is made
through a POP or return instruction, the IP value pushed is the address of the following instruction.
When the SP is incremented by an add instruction, the pushed IP value represents the address of
the instruction after the instruction following the add instruction.

Undefined Opcode Trap

When the instruction currently decoded by the CPU does not contain a valid C161RI opcode, the
UNDOPC flag is set in register TFR and the CPU enters the undefined opcode trap routine. The IP
value pushed onto the system stack is the address of the instruction that caused the trap.

This can be used to emulate unimplemented instructions. The trap service routine can examine the
faulting instruction to decode operands for unimplemented opcodes based on the stacked IP. In
order to resume processing, the stacked IP value must be incremented by the size of the undefined
instruction, which is determined by the user, before a RETI instruction is executed.

Protection Fault Trap

Whenever one of the special protected instructions is executed where the opcode of that instruction
is not repeated twice in the second word of the instruction and the byte following the opcode is not
the complement of the opcode, the PRTFLT flag in register TFR is set and the CPU enters the
protection fault trap routine. The protected instructions include DISWDT, EINIT, IDLE, PWRDN,
SRST, and SRVWDT. The IP value pushed onto the system stack for the protection fault trap is the
address of the instruction that caused the trap.

Illegal Word Operand Access Trap

Whenever a word operand read or write access is attempted to an odd byte address, the ILLOPA
flag in register TFR is set and the CPU enters the illegal word operand access trap routine. The IP
value pushed onto the system stack is the address of the instruction following the one which caused
the trap.

Illegal Instruction Access Trap

Whenever a branch is made to an odd byte address, the ILLINA flag in register TFR is set and the
CPU enters the illegal instruction access trap routine. The IP value pushed onto the system stack
is the illegal odd target address of the branch instruction.

Illegal External Bus Access Trap

Whenever the CPU requests an external instruction fetch, data read or data write, and no external
bus configuration has been specified, the ILLBUS flag in register TFR is set and the CPU enters the
illegal bus access trap routine. The IP value pushed onto the system stack is the address of the
instruction following the one which caused the trap.
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6 Clock Generation

All activities of the C161RI’s controller hardware and its on-chip peripherals are controlled via the
system clock signal fCPU.
This reference clock is generated in three stages (see also figure below):

● Oscillator
The on-chip Pierce oscillator can either run with an external crystal and appropriate oscillator
circuitry or it can be driven by an external oscillator.

● Frequency Control
The input clock signal feeds the controller hardware …
… directly, providing phase coupled operation on not too high input frequency
… divided by 2 in order to get 50% duty cycle clock signal
… via the Slow Down Divider (SDD) in order to reduce the power consumption.
The resulting internal clock signal is referred to as “CPU clock” fCPU.

● Clock Drivers
The CPU clock is distributed via separate clock drivers which feed the CPU itself and two groups of
peripheral modules. The RTC is fed with the prescaled oscillator clock (fRTC) via a separate clock
driver, so it is not affected by the clock control functions.

      

Figure 6-1
CPU Clock Generation Stages
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6.1 Oscillator

The main oscillator of the C161RI is a power optimized Pierce oscillator providing an inverter and
a feedback element. Pins XTAL1 and XTAL2 connect the inverter to the external crystal. The
standard external oscillator circuitry (see figure below) comprises the crystal, two low end
capacitors and series resistor (Rx2) to limit the current through the crystal. The additional LC
combination is only required for 3rd overtone crystals to suppress oscillation in the fundamental
mode. A test resistor (RQ) may be temporarily inserted to measure the oscillation allowance of the
oscillator circuitry.

   

Figure 6-2
External Oscillator Circuitry   

The on-chip oscillator is optimized for an input frequency range of 1 to 16 MHz.

An external clock signal (e.g. from an external oscillator or from a master device) may be fed to the
input XTAL1. The Pierce oscillator then is not required to support the oscillation itself but is rather
driven by the input signal. In this case the input frequency range may be 0 to 50 MHz (please note
that the maximum applicable input frequency is limited by the device’s maximum CPU frequency).
For input frequencies above 25 … 30 MHz the oscillator’s output should be terminated as shown in
the figure below, at lower frequencies it may be left open. This termination improves the operation
of the oscillator by filtering out frequencies above the intended oscillator frequency.
   

Figure 6-3
Oscillator Output Termination

Note: It is strongly recommended to measure the oscillation allowance (or margin) in the final target
system (layout) to determine the optimum parameters for the oscillator operation.
The external circuitry is different from that required by previous derivatives.
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6.2 Frequency Control

The CPU clock is generated from the oscillator clock in either of two software selectable ways:

The basic clock is the standard operating clock for the C161RI and is required to deliver the
intended maximum performance. The configuration via PORT0 (CLKCFG) after a long hardware
reset determines one of two possible basic clock generation modes:

● Direct Drive: the oscillator clock is directly fed to the controller hardware.
● Prescaler: the oscillator clock is divided by 2 to achieve a 50% duty cycle.

The Slow Down clock is the oscillator clock divided by a programmable factor of 1 … 32. This
alternate possibility runs the C161RI at a lower frequency (depending on the programmed slow
down factor) and thus greatly reduces its power consumption.

   

Figure 6-4
Frequency Control Paths
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The internal operation of the C161RI is controlled by the internal CPU clock fCPU. Both edges of the
CPU clock can trigger internal (e.g. pipeline) or external (e.g. bus cycles) operations (see figure
below).

    

Figure 6-5
Generation Mechanisms for the CPU Clock

Direct Drive   

When direct drive is configured (CLKCFG = ’011’) the C161RI’s clock system is directly fed from the
external clock input, i.e. fCPU = fOSC. This allows operation of the C161RI with a reasonably small
fundamental mode crystal. The specified minimum values for the CPU clock phases (TCLs) must be
respected. Therefore the maximum input clock frequency depends on the clock signal’s duty cycle.

Prescaler Operation   

When prescaler operation is configured (CLKCFG = ’001’) the C161RI’s input clock is divided by 2
to generate then CPU clock signal, i.e. fCPU = fOSC/2. This requires the oscillator (or input clock) to
run on 2 times the intended operating frequency but guarantees a 50% duty cycle for the internal
clock system independent of the input clock signal’s waveform.
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The table below lists the possible selections.

    

1) The maximum depends on the duty cycle of the external clock signal.
In emulation mode pin P0.15 (P0H.7) is inverted, i.e. the configuration ‘111’ would select
direct drive in emulation mode.

C161RI Clock Generation Modes   

P0.15-13
(P0H.7-5)

CPU Frequency 
fCPU = fOSC × F

External Clock Input 
Range

Notes

1 1 1 Reserved Default configuration

1 1 0 Reserved

1 0 1 Reserved

1 0 0 Reserved

0 1 1 fXTAL × 1 1 to 20 MHz Direct drive 1)

0 1 0 Reserved

0 0 1 fXTAL / 2 2 to 40 MHz Prescaler operation

0 0 0 Reserved
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6.3 Clock Drivers

The operating clock signal fCPU is distributed to the controller hardware via several clock drivers
which are disabled under certain circumstances. The real time clock RTC is clocked via a separate
clock driver which delivers the prescaled oscillator clock (contrary to the other clock drivers). The
table below summarizes the different clock drivers and their function, especially in power reduction
modes:

    

Note: Disabling PCD by setting bit PCDDIS stops the clock signal for all connected modules. Make
sure that all these modules are in a safe state before stopping their clock signal.
The port input and output values will not change while PCD is disabled,
CLKOUT will be high if enabled.
Please also respect the hints given in section “Flexible Peripheral Management” of chapter
“Power Management”.

Clock Drivers Description

Clock Driver Clock 
Signal

Active
mode

Idle
mode

P. Down
mode

Connected Circuitry

CCD
CPU
Clock Driver

fCPU ON Off Off CPU, memory modules

ICD
Interface
Clock Driver

fCPU ON ON Off ASC0, WDT, SSC,
interrupt detection circuitry

PCD
Peripheral
Clock Driver

fCPU Control via 
PCDDIS

Control via 
PCDDIS

Off (X)Peripherals (timers, etc.) 
except ICD,
interrupt controller, ports

RCD
RTC
Clock Driver

fOSC ON ON Control via 
PDCON

Realtime clock
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7 Parallel Ports

In order to accept or generate single external control signals or parallel data, the C161RI provides
up to 76 parallel IO lines organized into six 8-bit IO ports (PORT0 made of P0H and P0L, PORT1
made of P1H and P1L, Port 2, Port 6), one 15-bit IO port (Port 3), one 7-bit IO port (Port 4) and one
6-bit input port (Port 5).

These port lines may be used for general purpose Input/Output controlled via software or may be
used implicitly by C161RI’s integrated peripherals or the External Bus Controller.

All port lines are bit addressable, and all input/output lines are individually (bit-wise) programmable
as inputs or outputs via direction registers (except Port 5, of course). The IO ports are true
bidirectional ports which are switched to high impedance state when configured as inputs. The
output drivers of three IO ports (2, 3, 6) can be configured (pin by pin) for push/pull operation or
open-drain operation via control registers.

The logic level of a pin is clocked into the input latch once per state time, regardless whether the port
is configured for input or output.

A write operation to a port pin configured as an input causes the value to be written into the port
output latch, while a read operation returns the latched state of the pin itself. A read-modify-write
operation reads the value of the pin, modifies it, and writes it back to the output latch.

Writing to a pin configured as an output (DPx.y = ‘1’) causes the output latch and the pin to have the
written value, since the output buffer is enabled. Reading this pin returns the value of the output
latch. A read-modify-write operation reads the value of the output latch, modifies it, and writes it
back to the output latch, thus also modifying the level at the pin.

   

Figure 7-1
SFRs and Pins associated with the Parallel Ports
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Open Drain Mode   

In the C161RI certain ports provide Open Drain Control, which allows to switch the output driver of
a port pin from a push/pull configuration to an open drain configuration. In push/pull mode a port
output driver has an upper and a lower transistor, thus it can actively drive the line either to a high
or a low level. In open drain mode the upper transistor is always switched off, and the output driver
can only actively drive the line to a low level. When writing a ‘1’ to the port latch, the lower transistor
is switched off and the output enters a high-impedance state. The high level must then be provided
by an external pullup device. With this feature, it is possible to connect several port pins together to
a Wired-AND configuration, saving external glue logic and/or additional software overhead for
enabling/disabling output signals.

This feature is controlled through the respective Open Drain Control Registers ODPx which are
provided for each port that has this feature implemented. These registers allow the individual bit-
wise selection of the open drain mode for each port line. If the respective control bit ODPx.y is ‘0’
(default after reset), the output driver is in the push/pull mode. If ODPx.y is ‘1’, the open drain
configuration is selected. Note that all ODPx registers are located in the ESFR space.

   

Figure 7-2
Output Drivers in Push/Pull Mode and in Open Drain Mode
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Input Threshold Control   

The standard inputs of the C161RI determine the status of input signals according to TTL levels. In
order to accept and recognize noisy signals, CMOS-like input thresholds can be selected instead of
the standard TTL thresholds for all pins of specific ports. These special thresholds are defined
above the TTL thresholds and feature a defined hysteresis to prevent the inputs from toggling while
the respective input signal level is near the thresholds.

The Port Input Control register PICON allows to select these thresholds for each byte of the
indicated ports, i.e. 8-bit ports are controlled by one bit each while 16-bit ports are controlled by two
bits each.

PICON (F1C4H / E2H)   ESFR   Reset Value: - - 00H  

All options for individual direction and output mode control are available for each pin independent
from the selected input threshold.

The input hysteresis provides stable inputs from noisy or slowly changing external signals.

   

Figure 7-3
Hysteresis for Special Input Thresholds

Bit Function

PxLIN Port x Low Byte Input Level Selection
0 : Pins Px.7 … Px.0 switch on standard TTL input levels
1 : Pins Px.7 … Px.0 switch on special threshold input levels

PxHIN Port x High Byte Input Level Selection
0 : Pins Px.15 … Px.8 switch on standard TTL input levels
1 : Pins Px.15 … Px.8 switch on special threshold input levels

-P2HINP3LINP3HIN----

5 4 3 2 1 011 10 9 8 7 615 14 13 12

-- - - -- - - - rw rw rw- - - -

Input level

Bit state

Hysteresis
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Alternate Port Functions

In order to provide a maximum of flexibility for different applications and their specific IO
requirements port lines have programmable alternate input or output functions associated with
them.

   

If an alternate output function of a pin is to be used, the direction of this pin must be programmed
for output (DPx.y = ‘1’), except for some signals that are used directly after reset and are configured
automatically. Otherwise the pin remains in the high-impedance state and is not effected by the
alternate output function. The respective port latch should hold a ‘1’, because its output is combined
with the alternate output data.

If an alternate input function of a pin is used, the direction of the pin must be programmed for input
(DPx.y = ‘0’) if an external device is driving the pin. The input direction is the default after reset. If no
external device is connected to the pin, however, one can also set the direction for this pin to output.
In this case, the pin reflects the state of the port output latch. Thus, the alternate input function reads
the value stored in the port output latch. This can be used for testing purposes to allow a software
trigger of an alternate input function by writing to the port output latch.

On most of the port lines, the user software is responsible for setting the proper direction when using
an alternate input or output function of a pin. This is done by setting or clearing the direction control
bit DPx.y of the pin before enabling the alternate function. There are port lines, however, where the
direction of the port line is switched automatically. For instance, in the multiplexed external bus
modes of PORT0, the direction must be switched several times for an instruction fetch in order to
output the addresses and to input the data. Obviously, this cannot be done through instructions. In
these cases, the direction of the port line is switched automatically by hardware if the alternate
function of such a pin is enabled.
To determine the appropriate level of the port output latches check how the alternate data output is
combined with the respective port latch output.

Alternate Port Functions

Port Alternate Function(s)

PORT0 Address and data lines when accessing external resources (e.g. memory)

PORT1 Address lines when accessing external resources (e.g. memory)

Port 2 Fast external interrupt inputs

Port 3 Input/output functions of timers, serial interfaces
Optional bus control signal BHE/WRH and system clock output (CLKOUT)

Port 4 Additional selected segment address bits Axx … A16 in systems where more 
than 64 KBytes of memory are to be accessed directly

Port 5 Analog input channels to the A/D converter
Timer control signal inputs

Port 6 Chip select output signals and I2C interface lines
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There is one basic structure for all port lines with only an alternate input function. Port lines with only
an alternate output function, however, have different structures due to the way the direction of the
pin is switched and depending on whether the pin is accessible by the user software or not in the
alternate function mode.

All port lines that are not used for these alternate functions may be used as general purpose IO
lines. When using port pins for general purpose output, the initial output value should be written to
the port latch prior to enabling the output drivers, in order to avoid undesired transitions on the
output pins. This applies to single pins as well as to pin groups (see examples below).

OUTPUT_ENABLE_SINGLE_PIN:
BSET P4.0 ;Initial output level is ‘high’
BSET DP4.0 ;Switch on the output driver

OUTPUT_ENABLE_PIN_GROUP:
BFLDL P4, #05H, #05H ;Initial output level is ‘high’
BFLDL DP4, #05H, #05H ;Switch on the output drivers

Note: When using several BSET pairs to control more pins of one port, these pairs must be
separated by instructions, which do not reference the respective port (see “Particular
Pipeline Effects” in chapter “The Central Processing Unit”).

Each of these ports and the alternate input and output functions are described in detail in the
following subsections.
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7.1 PORT0

The two 8-bit ports P0H and P0L represent the higher and lower part of PORT0, respectively. Both
halfs of PORT0 can be written (e.g. via a PEC transfer) without effecting the other half.

If this port is used for general purpose IO, the direction of each line can be configured via the
corresponding direction registers DP0H and DP0L.

P0L (FF00H / 80H)   SFR Reset Value: - - 00H

P0H (FF02H / 81H)   SFR Reset Value: - - 00H  

   

DP0L (F100H / 80H)   ESFR Reset Value: - - 00H

DP0H (F102H / 81H)   ESFR Reset Value: - - 00H  

Bit Function

P0X.y Port data register P0H or P0L bit y

Bit Function

DP0X.y Port direction register DP0H or DP0L bit y
DP0X.y = 0: Port line P0X.y is an input (high-impedance)
DP0X.y = 1: Port line P0X.y is an output

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

P0L.0P0L.1P0L.2P0L.3P0L.4P0L.5P0L.6P0L.7

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

P0H.0P0H.1P0H.2P0H.3P0H.4P0H.5P0H.6P0H.7

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

DP0L
.7

DP0L
.6

DP0L
.5

DP0L
.4

DP0L
.3

DP0L
.2

DP0L
.1

DP0L
.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

DP0H
.7

DP0H
.6

DP0H
.5

DP0H
.4

DP0H
.3

DP0H
.2

DP0H
.1

DP0H
.0
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Alternate Functions of PORT0

When an external bus is enabled, PORT0 is used as data bus or address/data bus.
Note that an external 8-bit demultiplexed bus only uses P0L, while P0H is free for IO (provided that
no other bus mode is enabled).

PORT0 is also used to select the system startup configuration. During reset, PORT0 is configured
to input, and each line is held high through an internal pullup device. Each line can now be
individually pulled to a low level (see DC-level specifications in the respective Data Sheets) through
an external pulldown device. A default configuration is selected when the respective PORT0 lines
are at a high level. Through pulling individual lines to a low level, this default can be changed
according to the needs of the applications.
The internal pullup devices are designed such that an external pulldown resistors (see Data Sheet
specification) can be used to apply a correct low level. These external pulldown resistors can
remain connected to the PORT0 pins also during normal operation, however, care has to be taken
such that they do not disturb the normal function of PORT0 (this might be the case, for example, if
the external resistor is too strong).
With the end of reset, the selected bus configuration will be written to the BUSCON0 register. The
configuration of the high byte of PORT0 will be copied into the special register RP0H. This read-only
register holds the selection for the number of chip selects and segment addresses. Software can
read this register in order to react according to the selected configuration, if required.
When the reset is terminated, the internal pullup devices are switched off, and PORT0 will be
switched to the appropriate operating mode.

During external accesses in multiplexed bus modes PORT0 first outputs the 16-bit intra-segment
address as an alternate output function. PORT0 is then switched to high-impedance input mode to
read the incoming instruction or data. In 8-bit data bus mode, two memory cycles are required for
word accesses, the first for the low byte and the second for the high byte of the word. During write
cycles PORT0 outputs the data byte or word after outputting the address.
During external accesses in demultiplexed bus modes PORT0 reads the incoming instruction or
data word or outputs the data byte or word.    

Figure 7-4
PORT0 IO and Alternate Functions
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When an external bus mode is enabled, the direction of the port pin and the loading of data into the
port output latch are controlled by the bus controller hardware. The input of the port output latch is
disconnected from the internal bus and is switched to the line labeled “Alternate Data Output” via a
multiplexer. The alternate data can be the 16-bit intrasegment address or the 8/16-bit data
information. The incoming data on PORT0 is read on the line “Alternate Data Input”. While an
external bus mode is enabled, the user software should not write to the port output latch, otherwise
unpredictable results may occur. When the external bus modes are disabled, the contents of the
direction register last written by the user becomes active.

The figure below shows the structure of a PORT0 pin.

   

Figure 7-5
Block Diagram of a PORT0 Pin
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7.2 PORT1

The two 8-bit ports P1H and P1L represent the higher and lower part of PORT1, respectively. Both
halfs of PORT1 can be written (e.g. via a PEC transfer) without effecting the other half.

If this port is used for general purpose IO, the direction of each line can be configured via the
corresponding direction registers DP1H and DP1L.

P1L (FF04H / 82H)   SFR Reset Value: - - 00H

P1H (FF06H / 83H)   SFR Reset Value: - - 00H  

   

DP1L (F104H / 82H)   ESFR Reset Value: - - 00H

DP1H (F106H / 83H)   ESFR Reset Value: - - 00H  

Bit Function

P1X.y Port data register P1H or P1L bit y

Bit Function

DP1X.y Port direction register DP1H or DP1L bit y
DP1X.y = 0: Port line P1X.y is an input (high-impedance)
DP1X.y = 1: Port line P1X.y is an output

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

P1L.0P1L.1P1L.2P1L.3P1L.4P1L.5P1L.6P1L.7

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

P1H.0P1H.1P1H.2P1H.3P1H.4P1H.5P1H.6P1H.7

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

DP1L
.7

DP1L
.6

DP1L
.5

DP1L
.4

DP1L
.3

DP1L
.2

DP1L
.1

DP1L
.0

DP1H
.7

DP1H
.6

DP1H
.5

DP1H
.4

DP1H
.3

DP1H
.2

DP1H
.1

DP1H
.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -
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Alternate Functions of PORT1

When a demultiplexed external bus is enabled, PORT1 is used as address bus.
Note that demultiplexed bus modes use PORT1 as a 16-bit port. Otherwise all 16 port lines can be
used for general purpose IO.

During external accesses in demultiplexed bus modes PORT1 outputs the 16-bit intra-segment
address as an alternate output function.

During external accesses in multiplexed bus modes, when no BUSCON register selects a
demultiplexed bus mode, PORT1 is not used and is available for general purpose IO.

   

Figure 7-6
PORT1 IO and Alternate Functions

When an external bus mode is enabled, the direction of the port pin and the loading of data into the
port output latch are controlled by the bus controller hardware. The input of the port output latch is
disconnected from the internal bus and is switched to the line labeled “Alternate Data Output” via a
multiplexer. The alternate data is the 16-bit intrasegment address. While an external bus mode is
enabled, the user software should not write to the port output latch, otherwise unpredictable results
may occur. When the external bus modes are disabled, the contents of the direction register last
written by the user becomes active.

P1H.7
P1H.6
P1H.5
P1H.4
P1H.3
P1H.2
P1H.1
P1H.0
P1L.7
P1L.6
P1L.5
P1L.4
P1L.3
P1L.2
P1L.1
P1L.0

PORT1

P1H

P1L

A15
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

Alternate Function

General Purpose
Input/Output

8/16-bit
Demux Bus
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The figure below shows the structure of a PORT1 pin.

   

Figure 7-7
Block Diagram of a PORT1 Pin
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7.3 Port 2

If this 8-bit port is used for general purpose IO, the direction of each line can be configured via the
corresponding direction register DP2. Each port line can be switched into push/pull or open drain
mode via the open drain control register ODP2.

P2 (FFC0H / E0H)   SFR Reset Value: 0000H  

   

DP2 (FFC2H / E1H)   SFR Reset Value: 0000H  

ODP2 (F1C2H / E1H)   ESFR Reset Value: 0000H  

Bit Function

P2.y Port data register P2 bit y

Bit Function

DP2.y Port direction register DP2 bit y
DP2.y = 0: Port line P2.y is an input (high-impedance)
DP2.y = 1: Port line P2.y is an output

Bit Function

ODP2.y Port 2 Open Drain control register bit y
ODP2.y = 0: Port line P2.y output driver in push/pull mode
ODP2.y = 1: Port line P2.y output driver in open drain mode

P2.9P2.14

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- - - - - -rw rw rw rw - -rw rw rw rw

--------P2.8P2.10P2.11P2.12P2.13P2.15

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- - - - - -rw rw rw rw - -rw rw rw rw

DP2
.15

DP2
.14

DP2
.13

DP2
.12

DP2
.11

DP2
.10

DP2
.9

DP2
.8 - - - - - - - -

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- - - - - -rw rw rw rw - -rw rw rw rw

ODP2
.15

ODP2
.14

ODP2
.13

ODP2
.12

ODP2
.11

ODP2
.10

ODP2
.9

ODP2
.8 - - - - - - - -
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Alternate Functions of Port 2

All Port 2 lines (P2.15 … P2.8) serve as external interrupt inputs EX7IN … EX0IN (16 TCL sample
rate).

The table below summarizes the alternate functions of Port 2.

   

   

Figure 7-8
Port 2 IO and Alternate Functions

Port 2 Pin Alternate Function b)

P2.8
P2.9
P2.10
P2.11
P2.12
P2.13
P2.14
P2.15

EX0IN    Fast External Interrupt 0 Input
EX1IN    Fast External Interrupt 1 Input
EX2IN    Fast External Interrupt 2 Input
EX3IN    Fast External Interrupt 3 Input
EX4IN    Fast External Interrupt 4 Input
EX5IN    Fast External Interrupt 5 Input
EX6IN    Fast External Interrupt 6 Input
EX7IN    Fast External Interrupt 7 Input

P2.15
P2.14
P2.13
P2.12
P2.11
P2.10
P2.9
P2.8

Port 2

Alternate Function

General Purpose
Input/Output

EX7IN
EX6IN
EX5IN
EX4IN
EX3IN
EX2IN
EX1IN
EX0IN

Fast External
Interrupt Input
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Figure 7-9
Block Diagram of a Port 2 Pin

y = 15 … 8
z = 7 … 0

Alternate

Output

Enable

Alternate
Function

a

s
u
B

l

Read P2.y

Write P2.y

Port Output
Latch

MUX

0

1

Data

n

n
r
e
t

Ι

Direction

Write DP2.y

Read DP2.y

Latch

Open Drain

Read ODP2.y

Write ODP2.y

Latch

’1’

MUX

0

1

Latch

Clock

Input

Output
Buffer

MCB03783

P2.y

MUX
0

1

EXzIN
Semiconductor Group 7-14 1998-05-01



Parallel Ports
C161RI
7.4 Port 3

If this 15-bit port is used for general purpose IO, the direction of each line can be configured via the
corresponding direction register DP3. Most port lines can be switched into push/pull or open drain
mode via the open drain control register ODP3 (pins P3.15 and P3.12 do not support open drain
mode!).

Due to pin limitations register bit P3.14 is not connected to an output pin.

P3 (FFC4H / E2H)   SFR Reset Value: 0000H  

Note: Register bit P3.14 is not connected to an IO pin.   

DP3 (FFC6H / E3H)   SFR Reset Value: 0000H  

ODP3 (F1C6H / E3H)   ESFR Reset Value: 0000H  

Bit Function

P3.y Port data register P3 bit y

Bit Function

DP3.y Port direction register DP3 bit y
DP3.y = 0: Port line P3.y is an input (high-impedance)
DP3.y = 1: Port line P3.y is an output

Bit Function

ODP3.y Port 3 Open Drain control register bit y
ODP3.y = 0: Port line P3.y output driver in push/pull mode
ODP3.y = 1: Port line P3.y output driver in open drain mode

P3.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rwrw rw rw rw rw rwrw - rw rw

P3.1P3.2P3.3P3.4P3.5P3.6P3.7P3.8P3.9P3.10P3.11P3.12P3.13-P3.15

- - -

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rwrw rw rw rw rw rwrw - rw rw

DP3
.13

DP3
.11

DP3
.10

DP3
.9

DP3
.8

DP3
.7

DP3
.6

DP3
.5

DP3
.4

DP3
.3

DP3
.2

DP3
.1

DP3
.0-

DP3
.12

DP3
.15

- - -

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rwrw rw rw rw rw rw- - rw -

ODP3
.13

ODP3
.11

ODP3
.10

ODP3
.9

ODP3
.8

ODP3
.7

ODP3
.6

ODP3
.5

ODP3
.4

ODP3
.3

ODP3
.2

ODP3
.1

ODP3
.0- - -
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Alternate Functions of Port 3

The pins of Port 3 serve for various functions which include external timer control lines, the two
serial interfaces, one I2C Bus interface and the control lines BHE/WRH and CLKOUT.

The table below summarizes the alternate functions of Port 3.  

   

Figure 7-10
Port 3 IO and Alternate Functions

Port 3 Pin Alternate Function

P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7
P3.8
P3.9
P3.10
P3.11
P3.12
P3.13
-
P3.15

SCL0 I2C Bus Clock Line 0 (open drain only)
SDA0 I2C Bus Data Line 0 (open drain only)
CAPIN GPT2 Capture Input
T3OUT Timer 3 Toggle Latch Output
T3EUD Timer 3 External Up/Down Input
T4IN Timer 4 Count Input
T3IN Timer 3 Count Input
T2IN Timer 2 Count Input
MRST SSC Master Receive / Slave Transmit
MTSR SSC Master Transmit / Slave Receive
TxD0 ASC0 Transmit Data Output
RxD0 ASC0 Receive Data Input
BHE/WRH Byte High Enable / Write High Output
SCLK SSC Shift Clock Input/Output
-
CLKOUT System Clock Output

P3.15

P3.13
P3.12
P3.11
P3.10
P3.9
P3.8
P3.7
P3.6
P3.5
P3.4
P3.3
P3.2
P3.1
P3.0

Port 3

No Pin
CLKOUT

SCLK
BHE
RxD0
TxD0
MTSR
MRST
T2IN
T3IN
T4IN
T3EUD
T3OUT
CAPIN
SDA0
SCL0

WRH

Alternate Function a) b)

General Purpose
Input/Output
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The port structure of the Port 3 pins depends on their alternate function (see figure below).

When the on-chip peripheral associated with a Port 3 pin is configured to use the alternate input
function, it reads the input latch, which represents the state of the pin, via the line labeled “Alternate
Data Input”. Port 3 pins with alternate input functions are:
T2IN, T3IN, T4IN, T3EUD and CAPIN.

When the on-chip peripheral associated with a Port 3 pin is configured to use the alternate output
function, its “Alternate Data Output” line is ANDed with the port output latch line. When using these
alternate functions, the user must set the direction of the port line to output (DP3.y = 1) and must set
the port output latch (P3.y = 1). Otherwise the pin is in its high-impedance state (when configured
as input) or the pin is stuck at '0' (when the port output latch is cleared). When the alternate output
functions are not used, the “Alternate Data Output” line is in its inactive state, which is a high level
('1'). Port 3 pins with alternate output functions are:
T3OUT, TxD0 and CLKOUT.

When the on-chip peripheral associated with a Port 3 pin is configured to use both the alternate
input and output function, the descriptions above apply to the respective current operating mode.
The direction must be set accordingly. Port 3 pins with alternate input/output functions are:
SCL0, SDA0, MTSR, MRST, RxD0 and SCLK.

Note: Enabling the CLKOUT function automatically enables the P3.15 output driver. Setting bit
DP3.15 = ’1’ is not required.
The CLKOUT function is automatically enabled in emulation mode.
Pins P3.0 and P3.1 provide open drain output drivers only in order to be compatible with the
I2C Bus specification.
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Figure 7-11
Block Diagram of a Port 3 Pin with Alternate Input or Alternate Output Function
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Pin P3.12 (BHE/WRH) is one more pin with an alternate output function. However, its structure is
slightly different (see figure below), because after reset the BHE or WRH function must be used
depending on the system startup configuration. In these cases there is no possibility to program any
port latches before. Thus the appropriate alternate function is selected automatically. If BHE/WRH
is not used in the system, this pin can be used for general purpose IO by disabling the alternate
function (BYTDIS = ‘1’ / WRCFG = ‘0’).   

   

Figure 7-12
Block Diagram of Pins P3.15 (CLKOUT) and P3.12 (BHE/WRH)

Note: Enabling the BHE or WRH function automatically enables the P3.12 output driver. Setting bit
DP3.12 = ‘1’ is not required.
Enabling the CLKOUT function automatically enables the P3.15 output driver. Setting bit
DP3.15 = ‘1’ is not required.
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7.5 Port 4

If this 7-bit port is used for general purpose IO, the direction of each line can be configured via the
corresponding direction register DP4.

P4 (FFC8H / E4H)    SFR Reset Value: - - 00H  

   

DP4 (FFCAH / E5H)   SFR Reset Value: - - 00H  

Alternate Functions of Port 4

During external bus cycles that use segmentation (i.e. an address space above 64 KByte) a number
of Port 4 pins may output the segment address lines. The number of pins that is used for segment
address output determines the external address space which is directly accessible. The other pins
of Port 4 (if any) may be used for general purpose IO. If segment address lines are selected, the
alternate function of Port 4 may be necessary to access e.g. external memory directly after reset.
For this reason Port 4 will be switched to this alternate function automatically.

The number of segment address lines is selected via PORT0 during reset. The selected value can
be read from bitfield SALSEL in register RP0H (read only) e.g. in order to check the configuration
during run time.

Bit Function

P4.y Port data register P4 bit y

Bit Function

DP4.y Port direction register DP4 bit y
DP4.y = 0: Port line P4.y is an input (high-impedance)
DP4.y = 1: Port line P4.y is an output

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - - rw- - - -

P4.0P4.1P4.2P4.3P4.4P4.5P4.6-

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - - rw- - - -

DP4.0DP4.1DP4.2DP4.3DP4.4DP4.5DP4.6-
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The table below summarizes the alternate functions of Port 4 depending on the number of selected
segment address lines (coded via bitfield SALSEL).

   

   

Figure 7-13
Port 4 IO and Alternate Functions

Port 4
Pin

Std. Function
SALSEL = 0164 KB

Altern. Function
SALSEL = 11256KB

Altern. Function
SALSEL = 00 1 MB

Altern. Function
SALSEL = 10 4 MB

P4.0
P4.1
P4.2
P4.3
P4.4
P4.5
P4.6
-

Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
-

Seg. Address A16
Seg. Address A17
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
-

Seg. Address A16
Seg. Address A17
Seg. Address A18
Seg. Address A19
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
-

Seg. Address A16
Seg. Address A17
Seg. Address A18
Seg. Address A19
Seg. Address A20
Seg. Address A21
Seg. Address A22
-

-
-
-
-
-
-
-
-
-
P4.6
P4.5
P4.4
P4.3
P4.2
P4.1
P4.0

Port 4
A22
A21
A20
A19
A18
A17
A16

Alternate Function a)

General Purpose
Input/Output
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Figure 7-14
Block Diagram of a Port 4 Pin
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7.6 Port 5

This 6-bit input port can only read data. There is no output latch and no direction register. Data
written to P5 will be lost.

P5 (FFA2H / D1H)   SFR Reset Value: XXXXH  

   

Alternate Functions of Port 5

Four lines of Port 5 are also connected to the input multiplexer of the Analog/Digital Converter.
These port lines can accept analog signals (ANx) that can be converted by the ADC. For pins that
shall be used as analog inputs it is recommended to disable the digital input stage via register
P5DIDIS (see description below). This avoids undesired cross currents and switching noise while
the (analog) input signal level is between VIL and VIH. Some pins of Port 5 also serve as external
GPT timer control lines.

The table below summarizes the alternate functions of Port 5. 

Bit Function

P5.y Port data register P5 bit y (Read only)

Port 5 Pin Alternate Function a) Alternate Function b)

P5.0
P5.1
P5.2
P5.3
P5.14
P5.15

Analog Input  AN0
Analog Input  AN1
Analog Input  AN2
Analog Input  AN3
-
-

-
-
-
-
T4EUD Timer 4 ext. Up/Down Input
T3EUD Timer 2 ext. Up/Down Input

P5.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- - r r r r- - - - - -r r - -

P5.1P5.2P5.3----------P5.14P5.15
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Figure 7-15
Port 5 IO and Alternate Functions

Port 5 Digital Input Control

Port 5 pins may be used for both digital an analog input. By setting the respective bit in register
P5DIDIS the digital input stage of the respective port 5 pin can be disconnected from the pin. This
is recommended when the pin is to be used as analog input, as it reduces the current through the
digital input stage and prevents it from toggling while the (analog) input level is between the digital
low and high thresholds. So the consumed power and the generated noise can be reduced.

After reset all digital inputs are enabled.

P5DIDIS (FFA4H / D2H)    SFR Reset Value: 0000H  

Bit Function

P5D.y Port P5 Bit y Digital Input Control
P5D.y = 0: Digital input stage connected to port line P5.y
P5D.y = 1: Digital input stage disconnected from port line P5.y

P5.15
P5.14

P5.3
P5.2
P5.1
P5.0

Port 5

AN3
AN2
AN1
AN0

Alternate Function a)

General Purpose
Input

T4EUD
T2EUD

b)

A/D Converter
Input

Timer Control
Input

P5D.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- - rw rw rw rw- - - - - -- - - -

P5D.1P5D.2P5D.3------------
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Port 5 pins have a special port structure (see figure below), first because it is an input only port, and
second because the analog input channels are directly connected to the pins rather than to the input
latches.

   

Figure 7-16
Block Diagram of a Port 5 Pin
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7.7 Port 6

If this 8-bit port is used for general purpose IO, the direction of each line can be configured via the
corresponding direction register DP6. Each port line can be switched into push/pull or open drain
mode via the open drain control register ODP6.

P6 (FFCCH / E6H)   SFR Reset Value: - - 00H  

   

DP6 (FFCEH / E7H)   SFR Reset Value: - - 00H  

ODP6 (F1CEH / E7H)   ESFR Reset Value: - - 00H  

Bit Function

P6.y Port data register P6 bit y

Bit Function

DP6.y Port direction register DP6 bit y
DP6.y = 0: Port line P6.y is an input (high-impedance)
DP6.y = 1: Port line P6.y is an output

Bit Function

ODP6.y Port 6 Open Drain control register bit y
ODP6.y = 0: Port line P6.y output driver in push/pull mode
ODP6.y = 1: Port line P6.y output driver in open drain mode

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

P6.0P6.1P6.2P6.3P6.4P6.5P6.6P6.7

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

DP6.0DP6.1DP6.2DP6.3DP6.4DP6.5DP6.6DP6.7

- - -
ODP6

.4
ODP6

.3
ODP6

.2
ODP6

.1
ODP6

.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- rw rw rw rw rw- - - - - -- - - -
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Alternate Functions of Port 6

A programmable number of chip select signals (CS4 … CS0) derived from the bus control registers
(BUSCON4 … BUSCON0) can be output on 5 pins of Port 6. The other 3 pins may be used for I2C
Bus interface lines.
The number of chip select signals is selected via PORT0 during reset. The selected value can be
read from bitfield CSSEL in register RP0H (read only) e.g. in order to check the configuration during
run time.

The table below summarizes the alternate functions of Port 6 depending on the number of selected
chip select lines (coded via bitfield CSSEL).  

   

Figure 7-17
Port 6 IO and Alternate Functions

Port 6 Pin Altern. Function
CSSEL = 10

Altern. Function
CSSEL = 01

Altern. Function
CSSEL = 00

Altern. Function
CSSEL = 11

P6.0
P6.1
P6.2
P6.3
P6.4

Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO

Chip select   CS0
Chip select   CS1
Gen. purpose IO
Gen. purpose IO
Gen. purpose IO

Chip select   CS0
Chip select   CS1
Chip select   CS2
Gen. purpose IO
Gen. purpose IO

Chip select   CS0
Chip select   CS1
Chip select   CS2
Chip select   CS3
Chip select   CS4

P6.5
P6.6
P6.7

SDA1 I2C bus data line 1
SCL1 I2C bus clock line 1
SDA2 I2C bus data line 2

-
-
-
-
-
-
-
-
P6.7
P6.6
P6.5
P6.4
P6.3
P6.2
P6.1
P6.0

Port 6

-
-
-
-
-
-
-
-
SDA2
SCL1
SDA1
CS4
CS3
CS2
CS1
CS0

Alternate Function a)

General Purpose
Input/Output
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The chip select lines of Port 6 additionally have an internal weak pullup device. This device is
switched on always during reset for all potential CS output pins. This feature is implemented to drive
the chip select lines high during reset in order to avoid multiple chip selection.

After reset the CS function must be used, if selected so. In this case there is no possibility to
program any port latches before. Thus the alternate function (CS) is selected automatically in this
case.

Note: The open drain output option can only be selected via software earliest during the
initialization routine; the configured chip select lines (via CSSEL) will be in push/pull output
driver mode directly after reset.

   

Figure 7-18
Block Diagram of Port 6 Pins with an Alternate Output Function
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8 Dedicated Pins   

Most of the input/output or control signals of the functional the C161RI are realized as alternate
functions of pins of the parallel ports. There is, however, a number of signals that use separate pins,
including the oscillator, special control signals and, of course, the power supply.
The table below summarizes the 21 dedicated pins of the C161RI.   

The Address Latch Enable signal ALE controls external address latches that provide a stable
address in multiplexed bus modes.
ALE is activated for every external bus cycle independent of the selected bus mode, i.e. it is also
activated for bus cycles with a demultiplexed address bus. When an external bus is enabled (one
or more of the BUSACT bits set) also X-Peripheral accesses will generate an active ALE signal.
ALE is not activated for internal accesses, i.e. accesses to ROM/OTP/Flash (if provided), the
internal RAM and the special function registers. In single chip mode, i.e. when no external bus is
enabled (no BUSACT bit set), ALE will also remain inactive for X-Peripheral accesses.
During reset an internal pulldown ensures an inactive (low) level on the ALE output.

The External Read Strobe RD controls the output drivers of external memory or peripherals when
the C161RI reads data from these external devices. During accesses to on-chip X-Peripherals RD
remains inactive (high).
During reset an internal pullup ensures an inactive (high) level on the RD output.

The External Write Strobe WR/WRL controls the data transfer from the C161RI to an external
memory or peripheral device. This pin may either provide an general WR signal activated for both
byte and word write accesses, or specifically control the low byte of an external 16-bit device (WRL)
together with the signal WRH (alternate function of P3.12/BHE). During accesses to on-chip
X-Peripherals WR/WRL remains inactive (high).
During reset an internal pullup ensures an inactive (high) level on the WR/WRL output.

Pin(s) Function

ALE Address Latch Enable

RD External Read Strobe

WR/WRL External Write/Write Low Strobe

READY Ready Input

EA External Access Enable

NMI Non-Maskable Interrupt Input

XTAL1, XTAL2 Oscillator Input/Output

RSTIN Reset Input

RSTOUT Reset Output

VAREF, VAGND Power Supply for Analog/Digital Converter

VDD, VSS Digital Power Supply and Ground (6 pins each)
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The Ready Input READY receives a control signal from an external memory or peripheral device
that is used to terminate an external bus cycle, provided that this function is enabled for the current
bus cycle. READY may be used as synchronous READY or may be evaluated asynchronously.
When waitstates are defined for a READY controlled address window the READY input is not
evaluated during these waitstates.
An internal pullup ensures an inactive (high) level on the READY input.

The External Access Enable Pin EA determines if the C161RI after reset starts fetching code from
the internal ROM area (EA = ’1’) or via the external bus interface (EA = ’0’). Be sure to hold this
input low for ROMless devices. At the end of the internal reset sequence the EA signal is latched
together with the PORT0 configuration.

The Non-Maskable Interrupt Input NMI allows to trigger a high priority trap via an external signal
(e.g. a power-fail signal). It also serves to validate the PWRDN instruction that switches the C161RI
into Power-Down mode. The NMI pin is sampled with every CPU clock cycle to detect transitions.

The Oscillator Input XTAL1 and Output XTAL2 connect the internal Pierce oscillator to the
external crystal. The oscillator provides an inverter and a feedback element. The standard external
oscillator circuitry (see chapter “Clock Generation”) comprises the crystal, two low end capacitors
and series resistor to limit the current through the crystal.

An external clock signal may be fed to the input XTAL1, leaving XTAL2 open or terminating it for
higher input frequencies.

The Reset Input RSTIN allows to put the C161RI into the well defined reset condition either at
power-up or external events like a hardware failure or manual reset. The input voltage threshold of
the RSTIN pin is raised compared to the standard pins in order to minimize the noise sensitivity of
the reset input.

In bidirectional reset mode the C161RI’s line RSTIN may be driven active by the chip logic e.g. in
order to support external equipment which is required for startup (e.g. flash memory).

Bidirectional reset reflects internal reset sources (software, watchdog) also to the RSTIN pin and
converts short hardware reset pulses to a minimum duration of the internal reset sequence.
Bidirectional reset is enabled by setting bit BDRSTEN in register SYSCON and changes RSTIN
from a pure input to an open drain IO line. When an internal reset is triggered by the SRST
instruction or by a watchdog timer overflow or a low level is applied to the RSTIN line, an internal
driver pulls it low for the duration of the internal reset sequence. After that it is released and is then
controlled by the external circuitry alone.

The bidirectional reset function is useful in applications where external devices require a defined
reset signal but cannot be connected to the C161RI’s RSTOUT signal, e.g. an external flash
memory which must come out of reset and deliver code well before RSTOUT can be deactivated via
EINIT.
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The following behavior differences must be observed when using the bidirectional reset feature in
an application:

● Bit BDRSTEN in register SYSCON cannot be changed after EINIT and is cleared automatically
after a reset.

● The reset indication flags always indicate a long hardware reset.
● The PORT0 configuration is treated like on a hardware reset. Especially the bootstrap loader

may be activated when P0L.4 is low.
● Pin RSTIN may only be connected to external reset devices with an open drain output driver.
● A short hardware reset is extended to the duration of the internal reset sequence.

The Reset Output RSTOUT provides a special reset signal for external circuitry. RSTOUT is
activated at the beginning of the reset sequence, triggered via RSTIN, a watchdog timer overflow or
by the SRST instruction. RSTOUT remains active (low) until the EINIT instruction is executed. This
allows to initialize the controller before the external circuitry is activated.

Note: During emulation mode pin RSTOUT is used as an input and therefore must be driven by the
external circuitry.

The Power Supply pins for the Analog/Digital Converter VAREF and VAGND provide a
separate power supply for the on-chip ADC. This reduces the noise that is coupled to the analog
input signals from the digital logic sections and so improves the stability of the conversion results,
when VAREF and VAGND are properly discoupled from VDD and VSS.

The Power Supply pins VDD and VSS provide the power supply for the digital logic of the C161RI.
The respective VDD/VSS pairs should be decoupled as close to the pins as possible. For best
results it is recommended to implement two-level decoupling, e.g. (the widely used) 100 nF in
parallel with 30 … 40 pF capacitors which deliver the peak currents.

Note: All VDD pins and all VSS pins must be connected to the power supply and ground,
respectively.
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9 The External Bus Interface   

Although the C161RI provides a powerful set of on-chip peripherals and on-chip RAM and ROM/
OTP/Flash (except for ROMless versions) areas, these internal units only cover a small fraction of
its address space of up to 16 MByte. The external bus interface allows to access external
peripherals and additional volatile and non-volatile memory. The external bus interface provides a
number of configurations, so it can be taylored to fit perfectly into a given application system.

   

Figure 9-1
SFRs and Port Pins Associated with the External Bus Interface

Accesses to external memory or peripherals are executed by the integrated External Bus Controller
(EBC). The function of the EBC is controlled via the SYSCON register and the BUSCONx and
ADDRSELx registers. The BUSCONx registers specify the external bus cycles in terms of data
width (16-bit/8-bit), chip selects and length (waitstates / ALE / RW delay). These parameters are
used for accesses within a specific address area which is defined via the corresponding register
ADDRSELx.

The four pairs BUSCON1/ADDRSEL1 … BUSCON4/ADDRSEL4 allow to define four independent
“address windows”, while all external accesses outside these windows are controlled via register
BUSCON0.
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Single Chip Mode   

Single chip mode is entered, when pin EA is high during reset. In this case register BUSCON0 is
initialized with 0000H, which also resets bit BUSACT0, so no external bus is enabled.

In single chip mode the C161RI operates only with and out of internal resources. No external bus is
configured and no external peripherals and/or memory can be accessed. Also no port lines are
occupied for the bus interface. When running in single chip mode, however, external access may be
enabled by configuring an external bus under software control. Single chip mode allows the C161RI
to start execution out of the internal program memory (Mask-ROM, OTP or Flash memory).

Note: Any attempt to access a location in the external memory space in single chip mode results
in the hardware trap ILLBUS.

9.1 External Bus Modes      

When the external bus interface is enabled (bit BUSACTx = ‘1’) and configured (bitfield BTYP), the
C161RI uses a subset of its port lines together with some control lines to build the external bus.

   

The bus configuration (BTYP) for the address windows (BUSCON4 … BUSCON1) is selected via
software typically during the initialization of the system.

The bus configuration (BTYP) for the default address range (BUSCON0) is selected via PORT0
during reset, provided that pin EA is low during reset. Otherwise BUSCON0 may be programmed
via software just like the other BUSCON registers.

The 16 MByte address space of the C161RI is divided into 256 segments of 64 KByte each. The
16-bit intra-segment address is output on PORT0 for multiplexed bus modes or on PORT1 for
demultiplexed bus modes. When segmentation is disabled, only one 64 KByte segment can be
used and accessed. Otherwise additional address lines may be output on Port 4 (addressing up to
8 MByte) and/or several chip select lines may be used to select different memory banks or
peripherals. These functions are selected during reset via bitfields SALSEL and CSSEL of register
RP0H, respectively.

Note: Bit SGTDIS of register SYSCON defines, if the CSP register is saved during interrupt entry
(segmentation active) or not (segmentation disabled).

BTYP Encoding External Data Bus Width External Address Bus Mode

0 0 8-bit Data Demultiplexed Addresses

0 1 8-bit Data Multiplexed Addresses

1 0 16-bit Data Demultiplexed Addresses

1 1 16-bit Data Multiplexed Addresses
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Multiplexed Bus Modes   

In the multiplexed bus modes the 16-bit intra-segment address as well as the data use PORT0. The
address is time-multiplexed with the data and has to be latched externally. The width of the required
latch depends on the selected data bus width, i.e. an 8-bit data bus requires a byte latch (the
address bits A15 … A8 on P0H do not change, while P0L multiplexes address and data), a 16-bit
data bus requires a word latch (the least significant address line A0 is not relevant for word
accesses).
The upper address lines (An … A16) are permanently output on Port 4 (if segmentation is enabled)
and do not require latches.

The EBC initiates an external access by generating the Address Latch Enable signal (ALE) and
then placing an address on the bus. The falling edge of ALE triggers an external latch to capture the
address. After a period of time during which the address must have been latched externally, the
address is removed from the bus. The EBC now activates the respective command signal (RD, WR,
WRL, WRH). Data is driven onto the bus either by the EBC (for write cycles) or by the external
memory/peripheral (for read cycles). After a period of time, which is determined by the access time
of the memory/peripheral, data become valid.

Read cycles: Input data is latched and the command signal is now deactivated. This causes the
accessed device to remove its data from the bus which is then tri-stated again.

Write cycles: The command signal is now deactivated. The data remain valid on the bus until the
next external bus cycle is started.

   

Figure 9-2
Multiplexed Bus Cycle
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Demultiplexed Bus Modes   

In the demultiplexed bus modes the 16-bit intra-segment address is permanently output on PORT1,
while the data uses PORT0 (16-bit data) or P0L (8-bit data).
The upper address lines are permanently output on Port 4 (if selected via SALSEL during reset). No
address latches are required.

The EBC initiates an external access by placing an address on the address bus. After a
programmable period of time the EBC activates the respective command signal (RD, WR, WRL,
WRH). Data is driven onto the data bus either by the EBC (for write cycles) or by the external
memory/peripheral (for read cycles). After a period of time, which is determined by the access time
of the memory/peripheral, data become valid.

Read cycles: Input data is latched and the command signal is now deactivated. This causes the
accessed device to remove its data from the data bus which is then tri-stated again.

Write cycles: The command signal is now deactivated. If a subsequent external bus cycle is
required, the EBC places the respective address on the address bus. The data remain valid on the
bus until the next external bus cycle is started.

   

Figure 9-3
Demultiplexed Bus Cycle
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Switching between the Bus Modes

The EBC allows to switch between different bus modes dynamically, i.e. subsequent external bus
cycles may be executed in different ways. Certain address areas may use multiplexed or
demultiplexed buses or use READY control or predefined waitstates.

A change of the external bus characteristics can be initiated in two different ways:

Reprogramming the BUSCON and/or ADDRSEL registers allows to either change the bus mode
for a given address window, or change the size of an address window that uses a certain bus mode.
Reprogramming allows to use a great number of different address windows (more than BUSCONs
are available) on the expense of the overhead for changing the registers and keeping appropriate
tables.

Switching between predefined address windows automatically selects the bus mode that is
associated with the respective window. Predefined address windows allow to use different bus
modes without any overhead, but restrict their number to the number of BUSCONs. However, as
BUSCON0 controls all address areas, which are not covered by the other BUSCONs, this allows to
have gaps between these windows, which use the bus mode of BUSCON0.

PORT1 will output the intra-segment address, when any of the BUSCON registers selects a
demultiplexed bus mode, even if the current bus cycle uses a multiplexed bus mode. This allows to
have an external address decoder connected to PORT1 only, while using it for all kinds of bus
cycles.

Note: Never change the configuration for an address area that currently supplies the instruction
stream. Due to the internal pipelining it is very difficult to determine the first instruction fetch
that will use the new configuration. Only change the configuration for address areas that are
not currently accessed. This applies to BUSCON registers as well as to ADDRSEL registers.

The usage of the BUSCON/ADDRSEL registers is controlled via the issued addresses. When an
access (code fetch or data) is initiated, the respective generated physical address defines, if the
access is made internally, uses one of the address windows defined by ADDRSEL4 … 1, or uses
the default configuration in BUSCON0. After initializing the active registers, they are selected and
evaluated automatically by interpreting the physical address. No additional switching or selecting is
necessary during run time, except when more than the four address windows plus the default is to
be used.

Switching from demultiplexed to multiplexed bus mode represents a special case. The bus
cycle is started by activating ALE and driving the address to Port 4 and PORT1 as usual, if another
BUSCON register selects a demultiplexed bus. However, in the multiplexed bus modes the address
is also required on PORT0. In this special case the address on PORT0 is delayed by one CPU clock
cycle, which delays the complete (multiplexed) bus cycle and extends the corresponding ALE signal
(see figure below).

This extra time is required to allow the previously selected device (via demultiplexed bus) to release
the data bus, which would be available in a demultiplexed bus cycle.
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Figure 9-4
Switching from Demultiplexed to Multiplexed Bus Mode
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External Data Bus Width

The EBC can operate on 8-bit or 16-bit wide external memory/peripherals. A 16-bit data bus uses
PORT0, while an 8-bit data bus only uses P0L, the lower byte of PORT0. This saves on address
latches, bus transceivers, bus routing and memory cost on the expense of transfer time. The EBC
can control word accesses on an 8-bit data bus as well as byte accesses on a 16-bit data bus.

Word accesses on an 8-bit data bus are automatically split into two subsequent byte accesses,
where the low byte is accessed first, then the high byte. The assembly of bytes to words and the
disassembly of words into bytes is handled by the EBC and is transparent to the CPU and the
programmer.

Byte accesses on a 16-bit data bus require that the upper and lower half of the memory can be
accessed individually. In this case the upper byte is selected with the BHE signal, while the lower
byte is selected with the A0 signal. So the two bytes of the memory can be enabled independent
from each other, or together when accessing words.

When writing bytes to an external 16-bit device, which has a single CS input, but two WR enable
inputs (for the two bytes), the EBC can directly generate these two write control signals. This saves
the external combination of the WR signal with A0 or BHE. In this case pin WR serves as WRL (write
low byte) and pin BHE serves as WRH (write high byte). Bit WRCFG in register SYSCON selects
the operating mode for pins WR and BHE. The respective byte will be written on both data bus halfs.

When reading bytes from an external 16-bit device, whole words may be read and the C161RI
automatically selects the byte to be input and discards the other. However, care must be taken
when reading devices that change state when being read, like FIFOs, interrupt status registers, etc.
In this case individual bytes should be selected using BHE and A0.

   

Note: PORT1 gets available for general purpose IO, when none of the BUSCON registers selects
a demultiplexed bus mode.  

Disable/Enable Control for Pin BHE (BYTDIS)   
Bit BYTDIS is provided for controlling the active low Byte High Enable (BHE) pin. The function of the
BHE pin is enabled, if the BYTDIS bit contains a ’0’. Otherwise, it is disabled and the pin can be used
as standard IO pin. The BHE pin is implicitly used by the External Bus Controller to select one of two
byte-organized memory chips, which are connected to the C161RI via a word-wide external data
bus. After reset the BHE function is automatically enabled (BYTDIS = ‘0’), if a 16-bit data bus is
selected during reset, otherwise it is disabled (BYTDIS = ‘1’). It may be disabled, if byte access to
16-bit memory is not required, and the BHE signal is not used.

Bus Mode Transfer Rate (Speed factor 
for byte/word/dword access)

System Requirements Free IO Lines

8-bit Multiplexed Very low ( 1.5 / 3 / 6 ) Low (8-bit latch, byte bus) P1H, P1L

8-bit Demultipl. Low ( 1 / 2 / 4 ) Very low (no latch, byte bus) P0H

16-bit Multiplexed High ( 1.5 / 1.5 / 3 ) High (16-bit latch, word bus) P1H, P1L

16-bit Demultipl. Very high ( 1 / 1 / 2 ) Low (no latch, word bus) ---
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Segment Address Generation   

During external accesses the EBC generates a (programmable) number of address lines on Port 4,
which extend the 16-bit address output on PORT0 or PORT1 and so increase the accessible
address space. The number of segment address lines is selected during reset and coded in bit field
SALSEL in register RP0H (see table below).   

CS Signal Generation   

During external accesses the EBC can generate a (programmable) number of CS lines on Port 6,
which allow to directly select external peripherals or memory banks without requiring an external
decoder. The number of CS lines is selected during reset and coded in bit field CSSEL in register
RP0H (see table below).   

The CSx outputs are associated with the BUSCONx registers and are driven active (low) for any
access within the address area defined for the respective BUSCON register. For any access
outside this defined address area the respective CSx signal will go inactive (high). At the beginning
of each external bus cycle the corresponding valid CS signal is determined and activated. All other
CS lines are deactivated (driven high) at the same time.

Note: The CSx signals will not be updated for an access to any internal address area (i.e. when no
external bus cycle is started), even if this area is covered by the respective ADDRSELx
register. An access to an on-chip X-Peripheral deactivates all external CS signals.
Upon accesses to address windows without a selected CS line all selected CS lines are
deactivated.

SALSEL Segment Address Lines Directly accessible Address Space

1 1 Two: A17 … A16 256 KByte (Default without pull-downs)

1 0 Seven: A22 … A16 8 MByte (Maximum)

0 1 None 64 KByte (Minimum)

0 0 Four: A19 … A16 1 MByte

CSSEL Chip Select Lines Note

1 1 Five: CS4 … CS0 Default without pull-downs

1 0 None Port 6 pins free for IO

0 1 Two: CS1 … CS0

0 0 Three: CS2 … CS0
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The chip select signals allow to be operated in four different modes (see table below) which are
selected via bits CSWENx and CSRENx in the respective BUSCONx register.

   

Read or Write Chip Select signals remain active only as long as the associated control signal (RD
or WR) is active. This also includes the programmable read/write delay. Read chip select is only
activated for read cycles, write chip select is only activated for write cycles, read/write chip select is
activated for both read and write cycles (write cycles are assumed, if any of the signals WRH or
WRL gets active). These modes save external glue logic, when accessing external devices like
latches or drivers that only provide a single enable input.

Address Chip Select signals remain active during the complete bus cycle. For address chip select
signals two generation modes can be selected via bit CSCFG in register SYSCON:   
- A latched address chip select signal (CSCFG = ’0’) becomes active with the falling edge of ALE
and becomes inactive at the beginning of an external bus cycle that accesses a different address
window. No spikes will be generated on the chip select lines and no changes occur as long as
locations within the same address window or within internal memory (excluding X-Peripherals and
XRAM) are accessed.
- An early address chip select signal (CSCFG = ’1’) becomes active together with the address and
BHE (if enabled) and remains active until the end of the current bus cycle. Early address chip select
signals are not latched internally and may toggle intermediately while the address is changing.

Note: CS0 provides a latched address chip select directly after reset (except for single chip mode)
when the first instruction is fetched.

Internal pullup devices hold all CS lines high during reset. After the end of a reset sequence the
pullup devices are switched off and the pin drivers control the pin levels on the selected CS lines.
Not selected CS lines will enter the high-impedance state and are available for general purpose IO.

Segment Address versus Chip Select

The external bus interface of the C161RI supports many configurations for the external memory. By
increasing the number of segment address lines the C161RI can address a linear address space of
256 KByte, 1 MByte or 8 MByte. This allows to implement a large sequential memory area, and also
allows to access a great number of external devices, using an external decoder. By increasing the
number of CS lines the C161RI can access memory banks or peripherals without external glue
logic. These two features may be combined to optimize the overall system performance.

Note: Bit SGTDIS of register SYSCON defines, if the CSP register is saved during interrupt entry
(segmentation active) or not (segmentation disabled).

CSWENx CSRENx Chip Select Mode

0 0 Address Chip Select (Default after Reset)

0 1 Read Chip Select

1 0 Write Chip Select

1 1 Read/Write Chip Select
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9.2 Programmable Bus Characteristics   

Important timing characteristics of the external bus interface have been made user programmable
to allow to adapt it to a wide range of different external bus and memory configurations with different
types of memories and/or peripherals.

The following parameters of an external bus cycle are programmable:

• ALE Control defines the ALE signal length and the address hold time after its falling edge
• Memory Cycle Time (extendable with 1 … 15 waitstates) defines the allowable access time
• Memory Tri-State Time (extendable with 1 waitstate) defines the time for a data driver to float
• Read/Write Delay Time defines when a command is activated after the falling edge of ALE
• READY Control defines, if a bus cycle is terminated internally or externally

Note: Internal accesses are executed with maximum speed and therefore are not programmable.
External accesses use the slowest possible bus cycle after reset. The bus cycle timing may
then be optimized by the initialization software.

   

Figure 9-5
Programmable External Bus Cycle
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ALE Length Control   

The length of the ALE signal and the address hold time after its falling edge are controlled by the
ALECTLx bits in the BUSCON registers. When bit ALECTL is set to ‘1’, external bus cycles
accessing the respective address window will have their ALE signal prolonged by half a CPU clock
(1 TCL). Also the address hold time after the falling edge of ALE will be prolonged by half a CPU
clock, so the data transfer within a bus cycle refers to the same CLKOUT edges as usual (i.e. the
data transfer is delayed by one CPU clock). This allows more time for the address to be latched.

Note: ALECTL0 is ‘1’ after reset to select the slowest possible bus cycle, the other ALECTLx are
‘0’ after reset.

   

Figure 9-6
ALE Length Control
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Programmable Memory Cycle Time   

The C161RI allows the user to adjust the controller’s external bus cycles to the access time of the
respective memory or peripheral. This access time is the total time required to move the data to the
destination. It represents the period of time during which the controller’s signals do not change.

   

Figure 9-7
Memory Cycle Time

The external bus cycles of the C161RI can be extended for a memory or peripheral, which cannot
keep pace with the controller’s maximum speed, by introducing wait states during the access (see
figure above). During these memory cycle time wait states, the CPU is idle, if this access is required
for the execution of the current instruction.

The memory cycle time wait states can be programmed in increments of one CPU clock (2 TCL)
within a range from 0 to 15 (default after reset) via the MCTC fields of the BUSCON registers.
15-<MCTC> waitstates will be inserted.
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Programmable Memory Tri-State Time   

The C161RI allows the user to adjust the time between two subsequent external accesses to
account for the tri-state time of the external device. The tri-state time defines, when the external
device has released the bus after deactivation of the read command (RD).

   

Figure 9-8
Memory Tri-State Time

The output of the next address on the external bus can be delayed for a memory or peripheral,
which needs more time to switch off its bus drivers, by introducing a wait state after the previous bus
cycle (see figure above). During this memory tri-state time wait state, the CPU is not idle, so CPU
operations will only be slowed down if a subsequent external instruction or data fetch operation is
required during the next instruction cycle.

The memory tri-state time waitstate requires one CPU clock (2 TCL) and is controlled via the
MTTCx bits of the BUSCON registers. A waitstate will be inserted, if bit MTTCx is ‘0’ (default after
reset).

Note: External bus cycles in multiplexed bus modes implicitly add one tri-state time waitstate in
addition to the programmable MTTC waitstate.
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Read/Write Signal Delay   

The C161RI allows the user to adjust the timing of the read and write commands to account for
timing requirements of external peripherals. The read/write delay controls the time between the
falling edge of ALE and the falling edge of the command. Without read/write delay the falling edges
of ALE and command(s) are coincident (except for propagation delays). With the delay enabled, the
command(s) become active half a CPU clock (1 TCL) after the falling edge of ALE.
The read/write delay does not extend the memory cycle time, and does not slow down the controller
in general. In multiplexed bus modes, however, the data drivers of an external device may conflict
with the C161RI’s address, when the early RD signal is used. Therefore multiplexed bus cycles
should always be programmed with read/write delay.

   

Figure 9-9
Read/Write Delay

The read/write delay is controlled via the RWDCx bits in the BUSCON registers. The command(s)
will be delayed, if bit RWDCx is ‘0’ (default after reset).
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The Data drivers from the previous bus cycle should be disabled when the RD signal becomes active.
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9.3 READY Controlled Bus Cycles   

For situations, where the programmable waitstates are not enough, or where the response (access)
time of a peripheral is not constant, the C161RI provides external bus cycles that are terminated via
a READY input signal (synchronous or asynchronous). In this case the C161RI first inserts a
programmable number of waitstates (0 … 7) and then monitors the READY line to determine the
actual end of the current bus cycle. The external device drives READY low in order to indicate that
data have been latched (write cycle) or are available (read cycle).

   

Figure 9-10
READY Controlled Bus Cycles

The READY function is enabled via the RDYENx bits in the BUSCON registers. When this function
is selected (RDYENx = ‘1’), only the lower 3 bits of the respective MCTC bit field define the number
of inserted waitstates (0 … 7), while the MSB of bit field MCTC selects the READY operation:

MCTC.3 = ‘0’: Synchronous READY, i.e. the READY signal must meet setup and hold times.
MCTC.3 = ‘1’: Asynchronous READY, i.e. the READY signal is synchronized internally.

The Synchronous READY provides the fastest bus cycles, but requires setup and hold times to be
met. The CLKOUT signal should be enabled and may be used by the peripheral logic to control the
READY timing in this case.

The Asynchronous READY is less restrictive, but requires additional waitstates caused by the
internal synchronization. As the asynchronous READY is sampled earlier (see figure above)
programmed waitstates may be necessary to provide proper bus cycles (see also notes on
“normally-ready” peripherals below).
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A READY signal (especially asynchronous READY) that has been activated by an external device
may be deactivated in response to the trailing (rising) edge of the respective command (RD or WR).

Note: When the READY function is enabled for a specific address window, each bus cycle within
this window must be terminated with an active READY signal. Otherwise the controller hangs
until the next reset. A timeout function is only provided by the watchdog timer.

Combining the READY function with predefined waitstates is advantageous in two cases:

Memory components with a fixed access time and peripherals operating with READY may be
grouped into the same address window. The (external) waitstate control logic in this case would
activate READY either upon the memory’s chip select or with the peripheral’s READY output. After
the predefined number of waitstates the C161RI will check its READY line to determine the end of
the bus cycle. For a memory access it will be low already (see example a) in the figure above), for
a peripheral access it may be delayed (see example b) in the figure above). As memories tend to
be faster than peripherals, there should be no impact on system performance.

When using the READY function with so-called “normally-ready” peripherals, it may lead to
erroneous bus cycles, if the READY line is sampled too early. These peripherals pull their READY
output low, while they are idle. When they are accessed, they deactivate READY until the bus cycle
is complete, then drive it low again. If, however, the peripheral deactivates READY after the first
sample point of the C161RI, the controller samples an active READY and terminates the current
bus cycle, which, of course, is too early. By inserting predefined waitstates the first READY sample
point can be shifted to a time, where the peripheral has safely controlled the READY line (e.g. after
2 waitstates in the figure above).
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9.4 Controlling the External Bus Controller

A set of registers controls the functions of the EBC. General features like the usage of interface pins
(WR, BHE), segmentation and internal ROM mapping are controlled via register SYSCON. The
properties of a bus cycle like chip select mode, length of ALE, external bus mode, read/write delay
and waitstates are controlled via registers BUSCON4 … BUSCON0. Four of these registers
(BUSCON4 … BUSCON1) have an address select register (ADDRSEL4 … ADDRSEL1)
associated with them, which allows to specify up to four address areas and the individual bus
characteristics within these areas. All accesses that are not covered by these four areas are then
controlled via BUSCON0. This allows to use memory components or peripherals with different
interfaces within the same system, while optimizing accesses to each of them.

SYSCON (FF12H / 89H)    SFR  Reset Value: 0XX0H   

Bit Function

XPER-SHARE XBUS Peripheral Share Mode Control
0: External accesses to XBUS peripherals are disabled
1: XBUS peripherals are accessible via the external bus during hold mode

VISIBLE Visible Mode Control
0: Accesses to XBUS peripherals are done internally
1: XBUS peripheral accesses are made visible on the external pins

XPEN XBUS Peripheral Enable Bit
0: Accesses to the on-chip X-Peripherals and their functions are disabled
1: The on-chip X-Peripherals are enabled and can be accessed

BDRSTEN Bidirectional Reset Enable Bit
0: Pin RSTIN is an input only.
1: Pin RSTIN is pulled low during the internal reset sequence after a

software or WDT reset.

CSCFG Chip Select Configuration Control
0: Latched CS mode. The CS signals are latched internally

and driven to the (enabled) port pins synchronously.
1: Unlatched CS mode. The CS signals are directly derived from the address

and driven to the (enabled) port pins.

WRCFG Write Configuration Control (Set according to pin P0H.0 during reset)
0: Pins WR and BHE retain their normal function
1: Pin WR acts as WRL, pin BHE acts as WRH

WR
CFG

BD
RSTEN

CS
CFG XPEN

XPER-
SHARE

VISI
BLE- -

ROM
S1

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- rw rwrw rw rwrw rw

STKSZ
SGT
DIS

ROM
EN

rw

BYT
DIS

CLK
EN

rw - rw rwrw
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Note: Register SYSCON cannot be changed after execution of the EINIT instruction.
Bit SGTDIS controls the correct stack operation (push/pop of CSP or not) during traps and
interrupts.

CLKEN System Clock Output Enable (CLKOUT)
0: CLKOUT disabled: pin may be used for general purpose IO
1: CLKOUT enabled: pin outputs the system clock signal

BYTDIS Disable/Enable Control for Pin BHE (Set according to data bus width)
0: Pin BHE enabled
1: Pin BHE disabled, pin may be used for general purpose IO

ROMEN Internal ROM Enable (Set according to pin EA during reset)
0: Internal ROM disabled: accesses to the ROM area use the external bus
1: Internal ROM enabled

SGTDIS Segmentation Disable/Enable Control
0: Segmentation enabled (CSP is saved/restored during interrupt entry/exit)
1: Segmentation disabled (Only IP is saved/restored)

ROMS1 Internal ROM Mapping
0: Internal ROM area mapped to segment 0 (00’0000H … 00’7FFFH)
1: Internal ROM area mapped to segment 1 (01’0000H … 01’7FFFH)

STKSZ System Stack Size
Selects the size of the system stack (in the internal RAM) from 32 to 1024 words

Bit Function
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The layout of the five BUSCON registers is identical. Registers BUSCON4 … BUSCON1, which
control the selected address windows, are completely under software control, while register
BUSCON0, which e.g. is also used for the very first code access after reset, is partly controlled by
hardware, i.e. it is initialized via PORT0 during the reset sequence. This hardware control allows to
define an appropriate external bus for systems, where no internal program memory is provided.

   

BUSCON0 (FF0CH / 86H)   SFR Reset Value: 0XX0H 

BUSCON1 (FF14H / 8AH)   SFR Reset Value: 0000H 

BUSCON2 (FF16H / 8BH)   SFR Reset Value: 0000H 

BUSCON3 (FF18H / 8CH)   SFR Reset Value: 0000H 

BUSCON4 (FF1AH / 8DH)   SFR Reset Value: 0000H  

   

Note: BUSCON0 is initialized with 0000H, if pin EA is high during reset. If pin EA is low during reset,
bits BUSACT0 and ALECTL0 are set (‘1’) and bit field BTYP is loaded with the bus
configuration selected via PORT0.

-
CSW
EN0

CSR
EN0 -

MTT
C0

RWD
C0

RDY
EN0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rwrw rw rwrw rwrw - -

-
BUS
ACT0

rw

ALE
CTL0

- rw

BTYP MCTC

- --
MTT
C1

RWD
C1

RDY
EN1

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rwrw rw rwrw rw

BTYP MCTC

rw - -

BUS
ACT1

rw

ALE
CTL1

- rw

CSW
EN1

CSR
EN1

- --
MTT
C2

RWD
C2

RDY
EN2

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rwrw rw rwrw rw

BTYP MCTC

rw - -

BUS
ACT2

rw

ALE
CTL2

- rw

CSW
EN2

CSR
EN2

- --
MTT
C3

RWD
C3

RDY
EN3

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rwrw rw rwrw rw

BTYP MCTC

rw - -

BUS
ACT3

rw

ALE
CTL3

- rw

CSW
EN3

CSR
EN3

- --
MTT
C4

RWD
C4

RDY
EN4

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rwrw rw rwrw rw

BTYP MCTC

rw - -

BUS
ACT4

rw

ALE
CTL4

- rw

CSW
EN4

CSR
EN4
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Bit Function

MCTC Memory Cycle Time Control (Number of memory cycle time wait states)
0000: 15 waitstates (Number = 15 - <MCTC>)
. . .
1111: No waitstates

RWDCx Read/Write Delay Control for BUSCONx
0: With read/write delay: activate command 1 TCL after falling edge of ALE
1: No read/write delay: activate command with falling edge of ALE

MTTCx Memory Tristate Time Control
0: 1 waitstate
1: No waitstate

BTYP External Bus Configuration
00: 8-bit Demultiplexed Bus
01: 8-bit Multiplexed Bus
10: 16-bit Demultiplexed Bus
11: 16-bit Multiplexed Bus
Note: For BUSCON0 BTYP is defined via PORT0 during reset.

ALECTLx ALE Lengthening Control
0: Normal ALE signal
1: Lengthened ALE signal

BUSACTx Bus Active Control
0: External bus disabled
1: External bus enabled (within the respective address window, see ADDRSEL)

RDYENx READY Input Enable
0: External bus cycle is controlled by bit field MCTC only
1: External bus cycle is controlled by the READY input signal

CSRENx Read Chip Select Enable
0: The CS signal is independent of the read command (RD)
1: The CS signal is generated for the duration of the read command

CSWENx Write Chip Select Enable
0: The CS signal is independent of the write command (WR,WRL,WRH)
1: The CS signal is generated for the duration of the write command
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ADDRSEL1 (FE18H / 0CH)   SFR Reset Value: 0000H 

ADDRSEL2 (FE1AH / 0DH)   SFR Reset Value: 0000H 

ADDRSEL3(FE1CH / 0EH)   SFR Reset Value: 0000H 

ADDRSEL4 (FE1EH / 0FH)   SFR Reset Value: 0000H 

     

Note: There is no register ADDRSEL0, as register BUSCON0 controls all external accesses
outside the four address windows of BUSCON4 … BUSCON1 within the complete address
space.

Bit Function

RGSZ Range Size Selection
Defines the size of the address area controlled by the respective BUSCONx/
ADDRSELx register pair. See table below.

RGSAD Range Start Address
Defines the upper bits of the start address (A23 …) of the respective address 
area. See table below.

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw

RGSAD RGSZ

rw

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw

RGSAD RGSZ

rw

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw

RGSAD RGSZ

rw

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw

RGSAD RGSZ

rw
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Definition of Address Areas   

The four register pairs BUSCON4/ADDRSEL4 … BUSCON1/ADDRSEL1 allow to define 4
separate address areas within the address space of the C161RI. Within each of these address
areas external accesses can be controlled by one of the four different bus modes, independent of
each other and of the bus mode specified in register BUSCON0. Each ADDRSELx register in a way
cuts out an address window, within which the parameters in register BUSCONx are used to control
external accesses. The range start address of such a window defines the upper address bits, which
are not used within the address window of the specified size (see table below). For a given window
size only those upper address bits of the start address are used (marked “R”), which are not
implicitly used for addresses inside the window. The lower bits of the start address (marked “x”) are
disregarded.

   

Bit field RGSZ Resulting Window Size Relevant Bits (R) of Start Address (A23 … A12)

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1 
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 x x

4 KByte
8 KByte

16 KByte
32 KByte
64 KByte

128 KByte
256 KByte
512 KByte
1 MByte
2 MByte
4 MByte
8 MByte

Reserved.

R R R R R R R R R R R R
R R R R R R R R R R R x
R R R R R R R R R R x x
R R R R R R R R R x x x
R R R R R R R R x x x x
R R R R R R R x x x x x
R R R R R R x x x x x x
R R R R R x x x x x x x
R R R R x x x x x x x x
R R R x x x x x x x x x
R R x x x x x x x x x x
R x x x x x x x x x x x
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Address Window Arbitration   

The address windows that can be defined within the C161RI’s address space may partly overlap
each other. Thus e.g. small areas may be cut out of bigger windows in order to effectively utilize
external resources, especially within segment 0.

For each access the EBC compares the current address with all address select registers
(programmable ADDRSELx and hardwired XADRSx). This comparison is done in four levels.

Priority 1: The hardwired XADRSx registers are evaluated first. A match with one of these
registers directs the access to the respective X-Peripheral using the corresponding
XBCONx register and ignoring all other ADDRSELx registers.

Priority 2: Registers ADDRSEL2 and ADDRSEL4 are evaluated before ADDRSEL1 and 
ADDRSEL3, respectively. A match with one of these registers directs the access to 
the respective external area using the corresponding BUSCONx register and ignoring 
registers ADDRSEL1/3 (see figure below).

Priority 3: A match with registers ADDRSEL1 or ADDRSEL3 directs the access to the respective
external area using the corresponding BUSCONx register.

Priority 4: If there is no match with any XADRSx or ADDRSELx register the access to the external
bus uses register BUSCON0.

     

Figure 9-11
Address Window Arbitration

Note: Only the indicated overlaps are defined. All other overlaps lead to erroneous bus cycles. E.g.
ADDRSEL4 may not overlap ADDRSEL2 or ADDRSEL1. The hardwired XADRSx registers
are defined non-overlapping.

Active Window Inactive Window

BUSCON0
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XBCON0
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RP0H (F108H / 84H)   SFR  Reset Value: - - XXH  

Note: RP0H cannot be changed via software, but rather allows to check the current configuration.

Precautions and Hints

● The external bus interface is enabled as long as at least one of the BUSCON registers has its
BUSACT bit set.

● PORT1 will output the intra-segment address as long as at least one of the BUSCON registers
selects a demultiplexed external bus, even for multiplexed bus cycles.

● Not all address windows defined via registers ADDRSELx may overlap each other. The
operation of the EBC will be unpredictable in such a case. See chapter “Address Window
Arbitration”.

● The address windows defined via registers ADDRSELx may overlap internal address areas.
Internal accesses will be executed in this case.

● For any access to an internal address area the EBC will remain inactive (see EBC Idle State).

Bit Function

WRC Write Configuration
0: Pins WR and BHE operate as WRL and WRH signals
1: Pins WR and BHE operate as WR and BHE signals

CSSEL Chip Select Line Selection (Number of active CS outputs)
00: 3 CS lines: CS2 … CS0
01: 2 CS lines: CS1 … CS0
10: No CS lines at all
11: 5 CS lines: CS4 … CS0 (Default without pulldowns) 

SALSEL Segment Address Line Selection (Number of active segment address outputs)
00: 4-bit segment address: A19 … A16
01: No segment address lines at all
10: 6-bit segment address: A21 … A16
11: 2-bit segment address: A17 … A16 (Default without pulldowns) 

CLKCFG Clock Generation Mode Configuration
These pins define the clock generation mode, i.e. the mechanism how the 
internal CPU clock is generated from the externally applied (XTAL1) input clock.

WRC

5 4 3 2 1 011 10 9 8 7 615 14 13 12

r r- - - - r- - - -

CSSELSALSEL

r

CLKCFG
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9.5 EBC Idle State   

When the external bus interface is enabled, but no external access is currently executed, the EBC
is idle. As long as only internal resources (from an architecture point of view) like IRAM, GPRs or
SFRs, etc. are used the external bus interface does not change (see table below).

Accesses to on-chip X-Peripherals are also controlled by the EBC. However, even though an
X-Peripheral appears like an external peripheral to the controller, the respective accesses do not
generate valid external bus cycles.

Due to timing constraints address and write data of an XBUS cycle are reflected on the external bus
interface (see table below). The “address” mentioned above includes PORT1, Port 4, BHE and ALE
which also pulses for an XBUS cycle. The external CS signals on Port 6 are driven inactive (high)
because the EBC switches to an internal XCS signal.

The external control signals (RD and WR or WRL/WRH if enabled) remain inactive (high).

Status of the external bus interface during EBC idle state:   

Pins Internal Accesses only XBUS Accesses

PORT0 Tristated (floating) Tristated (floating) for read accesses
XBUS write data for write accesses

PORT1 Last used external address
(if used for the bus interface)

Last used XBUS address
(if used for the bus interface)

Port 4 Last used external segment address
(on selected pins)

Last used XBUS segment address
(on selected pins)

Port 6 Active external CS signal 
corresponding to last used address

Inactive (high) for selected CS signals

BHE Level corresponding to last external 
access

Level corresponding to last XBUS 
access

ALE Inactive (low) Pulses as defined for X-Peripheral

RD Inactive (high) Inactive (high)

WR/WRL Inactive (high) Inactive (high)

WRH Inactive (high) Inactive (high)
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9.6 The XBUS Interface   

The C161RI provides an on-chip interface (the XBUS interface), which allows to connect integrated
customer/application specific peripherals to the standard controller core. The XBUS is an internal
representation of the external bus interface, i.e. it is operated in the same way.

For each peripheral on the XBUS (X-Peripheral) there is a separate address window controlled by
a hardwired register pair similar to registers BUSCON and ADDRSEL. As an interface to a
peripheral in many cases is represented by just a few registers, the registers partly select smaller
address windows than the standard ADDRSEL registers. As the register pairs control integrated
peripherals rather than externally connected ones, they are fixed by mask programming rather than
being user programmable.

X-Peripheral accesses provide the same choices as external accesses, so these peripherals may
be bytewide or wordwide, with or without a separate address bus. Interrupt nodes are provided for
X-Peripherals to be integrated.

Note: If you plan to develop a peripheral of your own to be integrated into a C161RI device to create
a customer specific version, please ask for the specification of the XBUS interface and for
further support.
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10 The General Purpose Timer Units

The General Purpose Timer Units GPT1 and GPT2 represent very flexible multifunctional timer
structures which may be used for timing, event counting, pulse width measurement, pulse
generation, frequency multiplication, and other purposes. They incorporate five 16-bit timers that
are grouped into the two timer blocks GPT1 and GPT2.

Block GPT1 contains 3 timers/counters with a maximum resolution of 16 TCL, while block GPT2
contains 2 timers/counters with a maximum resolution of 8 TCL and a 16-bit Capture/Reload
register (CAPREL). Each timer in each block may operate independently in a number of different
modes such as gated timer or counter mode, or may be concatenated with another timer of the
same block. The auxiliary timers of GPT1 may optionally be configured as reload or capture
registers for the core timer. In the GPT2 block, the additional CAPREL register supports capture
and reload operation with extended functionality, and its core timer T6 may be concatenated with
timers of the CAPCOM units (T0, T1, T7 and T8). Each block has alternate input/output functions
and specific interrupts associated with it.

10.1 Timer Block GPT1   

From a programmer’s point of view, the GPT1 block is composed of a set of SFRs as summarized
below. Those portions of port and direction registers which are used for alternate functions by the
GPT1 block are shaded.

   

Figure 10-1
SFRs and Port Pins Associated with Timer Block GPT1

T4IC

T2 GPT1 Timer 2 Register
T3 GPT1 Timer 3 Register
T4 GPT1 Timer 4 Register
T2IC GPT1 Timer 2 Interrupt Control Register
T3IC GPT1 Timer 3 Interrupt Control Register
T4IC GPT1 Timer 4 Interrupt Control Register

T2IN/P3.7 T2EUD/P5.15
T3IN/P3.6 T3EUD/P3.4
T4IN/P3.5 T4EUD/P5.14
T3OUT/P3.3

T2CON

Ports & Direction Control
Alternate Functions

Data Registers Control Registers Interrupt Control

T2 T2IC

DP3

P3

T3

T4

T3ICT3CON

T4CON

P5

ODP3

ODP3 Port 3 Open Drain Control Register
DP3 Port 3 Direction Control Register
P3 Port 3 Data Register
T2CON GPT1 Timer 2 Control Register
T3CON GPT1 Timer 3 Control Register
T4CON GPT1 Timer 4 Control Register
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All three timers of block GPT1 (T2, T3, T4) can run in 4 basic modes, which are timer, gated timer,
counter and incremental interface mode, and all timers can either count up or down. Each timer has
an alternate input function pin (TxIN) associated with it which serves as the gate control in gated
timer mode, or as the count input in counter mode. The count direction (Up / Down) may be
programmed via software or may be dynamically altered by a signal at an external control input pin.
Each overflow/underflow of core timer T3 is latched in the toggle FlipFlop T3OTL and may be
indicated on an alternate output function pin. The auxiliary timers T2 and T4 may additionally be
concatenated with the core timer, or used as capture or reload registers for the core timer.

The current contents of each timer can be read or modified by the CPU by accessing the
corresponding timer registers T2, T3, or T4, which are located in the non-bitaddressable SFR
space. When any of the timer registers is written to by the CPU in the state immediately before a
timer increment, decrement, reload, or capture is to be performed, the CPU write operation has
priority in order to guarantee correct results.

   

Figure 10-2
GPT1 Block Diagram
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GPT1 Core Timer T3  

The core timer T3 is configured and controlled via its bitaddressable control register T3CON.  

T3CON (FF42H / A1H)   SFR Reset Value: 0000H  

 *) For the effects of bits T3UD and T3UDE refer to the direction table below.

Timer 3 Run Bit

The timer can be started or stopped by software through bit T3R (Timer T3 Run Bit). If T3R = ‘0’, the
timer stops. Setting T3R to ‘1’ will start the timer.
In gated timer mode, the timer will only run if T3R = ‘1’ and the gate is active (high or low, as
programmed).

Bit Function

T3I Timer 3 Input Selection
Depends on the operating mode, see respective sections.

T3M Timer 3 Mode Control (Basic Operating Mode)
0 0 0 : Timer Mode
0 0 1 : Counter Mode
0 1 0 : Gated Timer with Gate active low
0 1 1 : Gated Timer with Gate active high
1 0 0 : Reserved. Do not use this combination.
1 0 1 : Reserved. Do not use this combination.
1 1 0 : Incremental Interface Mode
1 1 1 : Reserved. Do not use this combination.

T3R Timer 3 Run Bit
T3R = ‘0’: Timer / Counter 3 stops
T3R = ‘1’: Timer / Counter 3 runs

T3UD Timer 3 Up / Down Control *)

T3UDE Timer 3 External Up/Down Enable *)

T3OE Alternate Output Function Enable
T3OE = ‘0’: Alternate Output Function Disabled
T3OE = ‘1’: Alternate Output Function Enabled

T3OTL Timer 3 Output Toggle Latch
Toggles on each overflow / underflow of T3. Can be set or reset by software.

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- rw rw rw rw rw- - - -

T3RT3UDT3OE-----
T3

OTL
T3

UDE T3M T3I
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Count Direction Control  

The count direction of the core timer can be controlled either by software or by the external input pin
T3EUD (Timer T3 External Up/Down Control Input), which is the alternate input function of port pin
P3.4. These options are selected by bits T3UD and T3UDE in control register T3CON. When the up/
down control is done by software (bit T3UDE = ‘0’), the count direction can be altered by setting or
clearing bit T3UD. When T3UDE = ‘1’, pin T3EUD is selected to be the controlling source of the
count direction. However, bit T3UD can still be used to reverse the actual count direction, as shown
in the table below. If T3UD = ‘0’ and pin T3EUD shows a low level, the timer is counting up. With a
high level at T3EUD the timer is counting down. If T3UD = ‘1’, a high level at pin T3EUD specifies
counting up, and a low level specifies counting down. The count direction can be changed
regardless of whether the timer is running or not.

When pin T3EUD/P3.4 is used as external count direction control input, it must be configured as
input, i.e. its corresponding direction control bit DP3.4 must be set to ‘0’.

GPT1 Core Timer T3 Count Direction Control  

Note: The direction control works the same for core timer T3 and for auxiliary timers T2 and T4.
Therefore the pins and bits are named Tx …

Timer 3 Output Toggle Latch

An overflow or underflow of timer T3 will clock the toggle bit T3OTL in control register T3CON.
T3OTL can also be set or reset by software. Bit T3OE (Alternate Output Function Enable) in register
T3CON enables the state of T3OTL to be an alternate function of the external output pin T3OUT.
For that purpose, a ‘1’ must be written into the respective port data latch and pin T3OUT must be
configured as output by setting the corresponding direction control bit to ‘1’. If T3OE = ‘1’, pin
T3OUT then outputs the state of T3OTL. If T3OE = ‘0’, pin T3OUT can be used as general purpose
IO pin.

In addition, T3OTL can be used in conjunction with the timer over/underflows as an input for the
counter function or as a trigger source for the reload function of the auxiliary timers T2 and T4. For
this purpose, the state of T3OTL does not have to be available at pin T3OUT, because an internal
connection is provided for this option.

Pin TxEUD Bit TxUDE Bit TxUD Count Direction

X 0 0 Count Up

X 0 1 Count Down

0 1 0 Count Up

1 1 0 Count Down

0 1 1 Count Down

1 1 1 Count Up
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Timer 3 in Timer Mode

Timer mode for the core timer T3 is selected by setting bit field T3M in register T3CON to ‘000B’. In
this mode, T3 is clocked with the internal system clock (CPU clock) divided by a programmable
prescaler, which is selected by bit field T3I. The input frequency fT3 for timer T3 and its resolution rT3

are scaled linearly with lower clock frequencies fCPU, as can be seen from the following formula:  

   

Figure 10-3
Block Diagram of Core Timer T3 in Timer Mode

The timer input frequencies, resolution and periods which result from the selected prescaler option
are listed in the table below. This table also applies to the Gated Timer Mode of T3 and to the
auxiliary timers T2 and T4 in timer and gated timer mode. Note that some numbers may be rounded
to 3 significant digits.

GPT1 Timer Input Frequencies, Resolution and Periods       

fCPU = 20 MHz Timer Input Selection T2I / T3I / T4I

000B 001B 010B 011B 100B 101B 110B 111B

Prescaler factor 8 16 32 64 128 256 512 1024

Input Frequency 2.5
MHz

1.25
MHz

625
kHz

312.5
kHz

156.25
kHz

78.125
kHz

39.06
kHz

19.53
kHz

Resolution 400 ns 800 ns 1.6 µs 3.2 µs 6.4 µs 12.8 µs 25.6 µs 51.2 µs

Period 26 ms 52.5 ms 105 ms 210 ms 420 ms 840 ms 1.68 s 3.36 s

fT3 =
fCPU

8 × 2<T3I>
rT3 [µs] =

fCPU [MHz]

8 × 2<T3I>

MCB03907

Core Timer Tx TxIR
Interrupt
Request

CPU

MUX

÷ XClock

TxUDE

TxI

TxR

0

1

TxOTL

EXORTxEUD

Tx3UD
Up/
Down

x = 3

TxOE

TxOUT

T3OUT = P3.3
T3EUD = P3.4
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Timer 3 in Gated Timer Mode

Gated timer mode for the core timer T3 is selected by setting bit field T3M in register T3CON to
‘010B’ or ‘011B’. Bit T3M.0 (T3CON.3) selects the active level of the gate input. In gated timer mode
the same options for the input frequency as for the timer mode are available. However, the input
clock to the timer in this mode is gated by the external input pin T3IN (Timer T3 External Input).
To enable this operation pin T3IN must be configured as input, i.e. the corresponding direction
control bit must contain ‘0’.

   

Figure 10-4
Block Diagram of Core Timer T3 in Gated Timer Mode

If T3M.0 = ‘0’, the timer is enabled when T3IN shows a low level. A high level at this pin stops the
timer. If T3M.0 = ‘1’, pin T3IN must have a high level in order to enable the timer. In addition, the
timer can be turned on or off by software using bit T3R. The timer will only run, if T3R = ‘1’ and the
gate is active. It will stop, if either T3R = ‘0’ or the gate is inactive.

Note: A transition of the gate signal at pin T3IN does not cause an interrupt request.

MCB03905

Core Timer Tx TxIR
Interrupt
Request

CPU

MUX

÷ XClock

TxUDE

TxI

TxM

0

1

TxOTL

EXOR

TxIN

TxUD

Up/
Down

TxEUD

TxR

x = 3T3IN     = P3.6
T3EUD = P3.4
T3OUT = P3.3

TxOE

TxOUT
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Timer 3 in Counter Mode  

Counter mode for the core timer T3 is selected by setting bit field T3M in register T3CON to ‘001B’.
In counter mode timer T3 is clocked by a transition at the external input pin T3IN. The event causing
an increment or decrement of the timer can be a positive, a negative, or both a positive and a
negative transition at this pin. Bit field T3I in control register T3CON selects the triggering transition
(see table below).

   

Figure 10-5
Block Diagram of Core Timer T3 in Counter Mode

   

For counter operation, pin T3IN must be configured as input, i.e. the respective direction control bit
DPx.y must be ‘0’. The maximum input frequency which is allowed in counter mode is fCPU/16. To
ensure that a transition of the count input signal which is applied to T3IN is correctly recognized, its
level should be held high or low for at least 8 fCPU cycles before it changes.

GPT1 Core Timer T3 (Counter Mode) Input Edge Selection

T3I Triggering Edge for Counter Increment / Decrement

0 0 0 None. Counter T3 is disabled

0 0 1 Positive transition (rising edge) on T3IN

0 1 0 Negative transition (falling edge) on T3IN

0 1 1 Any transition (rising or falling edge) on T3IN

1 X X Reserved. Do not use this combination

MCB03906

Core Timer Tx TxIR
Interrupt
Request

MUX

TxUDE

TxI

0

1

TxOTL

EXOR

TxIN

TxUD

Up/
Down

TxEUD

TxR

Edge
Select

x = 3
T3EUD = P3.4
T3IN     = P3.6

T3OUT = P3.3

TxOE

TxOUT
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Timer 3 in Incremental Interface Mode  

Incremental Interface mode for the core timer T3 is selected by setting bit field T3M in register
T3CON to ‘110B’. In incremental interface mode the two inputs associated with timer T3 (T3IN,
T3EUD) are used to interface to an incremental encoder. T3 is clocked by each transition on one or
both of the external input pins which gives 2-fold or 4-fold resolution of the encoder input.

   

Figure 10-6
Block Diagram of Core Timer T3 in Incremental Interface Mode

Bitfield T3I in control register T3CON selects the triggering transitions (see table below). In this
mode the sequence of the transitions of the two input signals is evaluated and generates count
pulses as well as the direction signal. So T3 is modified automatically according to the speed and
the direction of the incremental encoder and its contents therefore always represent the encoder’s
current position.

   

GPT1 Core Timer T3 (Incremental Interface Mode) Input Edge Selection

T3I Triggering Edge for Counter Increment / Decrement

0 0 0 None. Counter T3 stops.

0 0 1 Any transition (rising or falling edge) on T3IN.

0 1 0 Any transition (rising or falling edge) on T3EUD.

0 1 1 Any transition (rising or falling edge) on any T3 input (T3IN or T3EUD).

1 X X Reserved. Do not use this combination

Edge detect

Phase detect

T3

T3RT3I

XOR
MUX

T3UD
T3UDE

T3IN

T3EUD

T3IR

T3OTL

T3OUT

T3OE

Up/Down
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The incremental encoder can be connected directly to the C161RI without external interface logic.
In a standard system, however, comparators will be employed to convert the encoder’s differential
outputs (e.g. A, A) to digital signals (e.g. A). This greatly increases noise immunity.

Note: The third encoder output Top0, which indicates the mechanical zero position, may be
connected to an external interrupt input and trigger a reset of timer T3 (e.g. via PEC transfer
from ZEROS).

   

Figure 10-7
Connection of the Encoder to the C161RI

For incremental interface operation the following conditions must be met:

● Bitfield T3M must be ‘110B’.
● Both pins T3IN and T3EUD must be configured as input, i.e. the respective direction control bits

must be ‘0’.
● Bt be ‘1’ to enable automatic direction control.

The maximum input frequency which is allowed in incremental interface mode is fCPU/16. To ensure
that a transition of any input signal is correctly recognized, its level should be held high or low for at
least 8 fCPU cycles before it changes.

In Incremental Interface Mode the count direction is automatically derived from the sequence in
which the input signals change, which corresponds to the rotation direction of the connected sensor.
The table below summarizes the possible combinations.   

The figures below give examples of T3’s operation, visualizing count signal generation and direction
control. It also shows how input jitter is compensated which might occur if the sensor rests near to
one of its switching points.

GPT1 Core Timer T3 (Incremental Interface Mode) Count Direction

Level on respective 
other input

T3IN Input T3EUD Input

Rising Falling Rising Falling 

High Down Up Up Down

Low Up Down Down Up

A

C
16

1R
I

A

B
B

T0
T0

A

B

T0

E
n

co
d

er

Signal
conditioning

T3input

T3input

Interrupt
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Figure 10-8
Evaluation of the Incremental Encoder Signals
   

Figure 10-9
Evaluation of the Incremental Encoder Signals

Note: Timer T3 operating in incremental interface mode automatically provides information on the
sensor’s current position. Dynamic information (speed, acceleration, deceleration) may be
obtained by measuring the incoming signal periods. This is facilitated by an additional special
capture mode for timer T5.

T3IN

T3EUD

Contents
of T3

Forward ForwardBackward JitterJitter

Up Down
Up

Note: This example shows the timer behaviour assuming that T3 counts upon any transition on
any input, ie. T3I = ’011B’.

T3IN

T3EUD

Contents
of T3

Forward ForwardBackward JitterJitter

Up Down Up

Note: This example shows the timer behaviour assuming that T3 counts upon any transition on
input T3IN, ie. T3I = ’001B’.
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GPT1 Auxiliary Timers T2 and T4  

Both auxiliary timers T2 and T4 have exactly the same functionality. They can be configured for
timer, gated timer, counter, or incremental interface mode with the same options for the timer
frequencies and the count signal as the core timer T3. In addition to these 4 counting modes, the
auxiliary timers can be concatenated with the core timer, or they may be used as reload or capture
registers in conjunction with the core timer.

The individual configuration for timers T2 and T4 is determined by their bitaddressable control
registers T2CON and T4CON, which are both organized identically. Note that functions which are
present in all 3 timers of block GPT1 are controlled in the same bit positions and in the same manner
in each of the specific control registers.

T2CON (FF40H / A0H)   SFR  Reset Value: 0000H  

T4CON (FF44H / A2H)   SFR  Reset Value: 0000H     

 *) For the effects of bits TxUD and TxUDE refer to the direction table (see T3 section).

Bit Function

TxI Timer x Input Selection
Depends on the Operating Mode, see respective sections.

TxM Timer x Mode Control (Basic Operating Mode)
0 0 0 : Timer Mode
0 0 1 : Counter Mode
0 1 0 : Gated Timer with Gate active low
0 1 1 : Gated Timer with Gate active high
1 0 0 : Reload Mode
1 0 1 : Capture Mode
1 1 0 : Incremental Interface Mode
1 1 1 : Reserved. Do not use this combination.

TxR Timer x Run Bit
TxR = ‘0’: Timer / Counter x stops
TxR = ‘1’: Timer / Counter x runs

TxUD Timer x Up / Down Control *) 

TxUDE Timer x External Up/Down Enable *) 

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - rw rw rw- - - -

T2RT2UD-----
T2

UDE- - T2IT2M

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - rw rw rw- - - -

T4RT4UD-----
T4

UDE- - T4IT4M
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Note: The auxiliary timers have no output toggle latch and no alternate output function.

Count Direction Control for Auxiliary Timers

The count direction of the auxiliary timers can be controlled in the same way as for the core timer
T3. The description and the table apply accordingly.

Timers T2 and T4 in Timer Mode or Gated Timer Mode

When the auxiliary timers T2 and T4 are programmed to timer mode or gated timer mode, their
operation is the same as described for the core timer T3. The descriptions, figures and tables apply
accordingly with one exception:

• There is no output toggle latch for T2 and T4.

Timers T2 and T4 in Incremental Interface Mode

When the auxiliary timers T2 and T4 are programmed to incremental interface mode, their operation
is the same as described for the core timer T3. The descriptions, figures and tables apply
accordingly.
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Timers T2 and T4 in Counter Mode  

Counter mode for the auxiliary timers T2 and T4 is selected by setting bit field TxM in the respective
register TxCON to ‘001B’. In counter mode timers T2 and T4 can be clocked either by a transition at
the respective external input pin TxIN, or by a transition of timer T3’s output toggle latch T3OTL.
   

Figure 10-10
Block Diagram of an Auxiliary Timer in Counter Mode

The event causing an increment or decrement of a timer can be a positive, a negative, or both a
positive and a negative transition at either the respective input pin, or at the toggle latch T3OTL.
Bit field TxI in the respective control register TxCON selects the triggering transition (see table
below).

GPT1 Auxiliary Timer (Counter Mode) Input Edge Selection  

Note: Only state transitions of T3OTL which are caused by the overflows/underflows of T3 will
trigger the counter function of T2/T4. Modifications of T3OTL via software will NOT trigger
the counter function of T2/T4.

T2I / T4I Triggering Edge for Counter Increment / Decrement

X 0 0 None. Counter Tx is disabled

0 0 1 Positive transition (rising edge) on TxIN

0 1 0 Negative transition (falling edge) on TxIN

0 1 1 Any transition (rising or falling edge) on TxIN

1 0 1 Positive transition (rising edge) of output toggle latch T3OTL

1 1 0 Negative transition (falling edge) of output toggle latch T3OTL

1 1 1 Any transition (rising or falling edge) of output toggle latch T3OTL

MCB02221

Auxiliary Timer Tx TxIR
Interrupt
Request

MUX

TxUDE

TxI

0

1EXOR

TxIN

TxUD

Up/
Down

TxEUD

TxR

Edge
Select

x = 2, 4
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For counter operation, pin TxIN must be configured as input, i.e. the respective direction control bit
must be ‘0’. The maximum input frequency which is allowed in counter mode is fCPU/16. To ensure
that a transition of the count input signal which is applied to TxIN is correctly recognized, its level
should be held for at least 8 fCPU cycles before it changes.

Timer Concatenation   

Using the toggle bit T3OTL as a clock source for an auxiliary timer in counter mode concatenates
the core timer T3 with the respective auxiliary timer. Depending on which transition of T3OTL is
selected to clock the auxiliary timer, this concatenation forms a 32-bit or a 33-bit timer/counter.

• 32-bit Timer/Counter : If both a positive and a negative transition of T3OTL is used to clock the
auxiliary timer, this timer is clocked on every overflow/underflow of the core timer T3. Thus, the two
timers form a 32-bit timer.

• 33-bit Timer/Counter : If either a positive or a negative transition of T3OTL is selected to clock the
auxiliary timer, this timer is clocked on every second overflow/underflow of the core timer T3. This
configuration forms a 33-bit timer (16-bit core timer+T3OTL+16-bit auxiliary timer).

The count directions of the two concatenated timers are not required to be the same. This offers a
wide variety of different configurations.
T3 can operate in timer, gated timer or counter mode in this case.

   

Figure 10-11
Concatenation of Core Timer T3 and an Auxiliary Timer

MCB02034

Auxiliary Timer Tx TxIR
Interrupt
Request

TxR

Select

Up/DownTyR

TyI

Clock ÷ X
CPU

Request
Interrupt

TyIRCore Timer Ty

TyOTL

TxI

Edge
* )

Line only affected by over/underflows of T3, but NOT by software modifications of T3OTL.)*

T3OUT = P3.3 x = 2,4  y = 3
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Auxiliary Timer in Reload Mode

Reload mode for the auxiliary timers T2 and T4 is selected by setting bit field TxM in the respective
register TxCON to ‘100B’. In reload mode the core timer T3 is reloaded with the contents of an
auxiliary timer register, triggered by one of two different signals. The trigger signal is selected the
same way as the clock source for counter mode (see table above), i.e. a transition of the auxiliary
timer’s input or the output toggle latch T3OTL may trigger the reload.

Note: When programmed for reload mode, the respective auxiliary timer (T2 or T4) stops
independent of its run flag T2R or T4R.

   

Figure 10-12
GPT1 Auxiliary Timer in Reload Mode

Upon a trigger signal T3 is loaded with the contents of the respective timer register (T2 or T4) and
the interrupt request flag (T2IR or T4IR) is set.

Note: When a T3OTL transition is selected for the trigger signal, also the interrupt request flag T3IR
will be set upon a trigger, indicating T3’s overflow or underflow.
Modifications of T3OTL via software will NOT trigger the counter function of T2/T4.

The reload mode triggered by T3OTL can be used in a number of different configurations.
Depending on the selected active transition the following functions can be performed:

• If both a positive and a negative transition of T3OTL is selected to trigger a reload, the core timer
will be reloaded with the contents of the auxiliary timer each time it overflows or underflows. This is
the standard reload mode (reload on overflow/underflow).

• If either a positive or a negative transition of T3OTL is selected to trigger a reload, the core timer
will be reloaded with the contents of the auxiliary timer on every second overflow or underflow.

MCB02035

x = (2, 4)

Up/

Request
Interrupt

T3IRCore Timer T3

Down
T3OTL

Input
Clock

TxI

P3.7/P3.5

Select

TxIN

Reload Register Tx

TxIR
Interrupt
Request

Source/Edge

*)

Line only affected by over/underflows of T3, but NOT by software modifications of T3OTL.* )
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• Using this “single-transition” mode for both auxiliary timers allows to perform very flexible pulse
width modulation (PWM). One of the auxiliary timers is programmed to reload the core timer on a
positive transition of T3OTL, the other is programmed for a reload on a negative transition of
T3OTL. With this combination the core timer is alternately reloaded from the two auxiliary timers.

The figure below shows an example for the generation of a PWM signal using the alternate reload
mechanism. T2 defines the high time of the PWM signal (reloaded on positive transitions) and T4
defines the low time of the PWM signal (reloaded on negative transitions). The PWM signal can be
output on T3OUT with T3OE = ‘1’, port latch = ‘1’ and direction bit = ‘1’. With this method the high
and low time of the PWM signal can be varied in a wide range.

Note: The output toggle latch T3OTL is accessible via software and may be changed, if required,
to modify the PWM signal. However, this will NOT trigger the reloading of T3.

   

Figure 10-13
GPT1 Timer Reload Configuration for PWM Generation

Note: Although it is possible, it should be avoided to select the same reload trigger event for both
auxiliary timers. In this case both reload registers would try to load the core timer at the same
time. If this combination is selected, T2 is disregarded and the contents of T4 is reloaded.

*) Note: Lines only affected by over/underflows of T3, but NOT by software modifications of T3OTL.

MCB02037
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Interrupt
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Core Timer T3 P3.3
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T3OE
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T2I

Reload Register T2

T2IR
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Interrupt

T4IR

Reload Register T4
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Auxiliary Timer in Capture Mode  

Capture mode for the auxiliary timers T2 and T4 is selected by setting bit field TxM in the respective
register TxCON to ‘101B’. In capture mode the contents of the core timer are latched into an auxiliary
timer register in response to a signal transition at the respective auxiliary timer's external input pin
TxIN. The capture trigger signal can be a positive, a negative, or both a positive and a negative
transition.

The two least significant bits of bit field TxI are used to select the active transition (see table in the
counter mode section), while the most significant bit TxI.2 is irrelevant for capture mode. It is
recommended to keep this bit cleared (TxI.2 = ‘0’).

Note: When programmed for capture mode, the respective auxiliary timer (T2 or T4) stops
independent of its run flag T2R or T4R.

   

Figure 10-14
GPT1 Auxiliary Timer in Capture Mode

Upon a trigger (selected transition) at the corresponding input pin TxIN the contents of the core
timer are loaded into the auxiliary timer register and the associated interrupt request flag TxIR will
be set.

Note: The direction control bits for T2IN and T4IN must be set to '0', and the level of the capture
trigger signal should be held high or low for at least 8 fCPU cycles before it changes to ensure
correct edge detection.

MCS03898x = (2, 4)

Up/Down

Request
Interrupt

T3IRCore Timer T3
Input
Clock

TxI

P3.7/P3.5

Select
Edge

TxIN

Capture Register Tx

TxIR
Interrupt
Request

T3OTL

T3OE

P3.3
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Interrupt Control for GPT1 Timers

When a timer overflows from FFFFH to 0000H (when counting up), or when it underflows from 0000H

to FFFFH (when counting down), its interrupt request flag (T2IR, T3IR or T4IR) in register TxIC will
be set. This will cause an interrupt to the respective timer interrupt vector (T2INT, T3INT or T4INT)
or trigger a PEC service, if the respective interrupt enable bit (T2IE, T3IE or T4IE in register TxIC)
is set. There is an interrupt control register for each of the three timers.  

T2IC (FF60H / B0H)   SFR Reset Value: - - 00H 

T3IC (FF62H / B1H)   SFR Reset Value: - - 00H 

T4IC (FF64H / B2H)   SFR Reset Value: - - 00H 

Note: Please refer to the general Interrupt Control Register description for an explanation of the
control fields.

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

T2IET2IR GLVLILVL

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

T3IET3IR GLVLILVL

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

T4IET4IR GLVLILVL
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10.2 Timer Block GPT2  

From a programmer’s point of view, the GPT2 block is represented by a set of SFRs as summarized
below. Those portions of port and direction registers which are used for alternate functions by the
GPT2 block are shaded.

   

Figure 10-15
SFRs and Port Pins Associated with Timer Block GPT2

Timer block GPT2 supports high precision event control with a maximum resolution of 8 TCL. It
includes the two timers T5 and T6, and the 16-bit capture/reload register CAPREL. Timer T6 is
referred to as the core timer, and T5 is referred to as the auxiliary timer of GPT2.

The count direction (Up / Down) may be programmed via software. An overflow/underflow of T6 is
indicated by the output toggle bit T6OTL. In addition, T6 may be reloaded with the contents of
CAPREL.

The toggle bit also supports the concatenation of T6 with auxiliary timer T5. Triggered by an external
signal, the contents of T5 can be captured into register CAPREL, and T5 may optionally be cleared.
Both timer T6 and T5 can count up or down, and the current timer value can be read or modified by
the CPU in the non-bitaddressable SFRs T5 and T6.

ODP3 Port 3 Open Drain Control Register
DP3 Port 3 Direction Control Register
P3 Port 3 Data Register
T5CON GPT2 Timer 5 Control Register
T6CON GPT2 Timer 6 Control Register

CAPIN/P3.2

T5CON

Control Registers   

T5 GPT2 Timer 5 Register
T6 GPT2 Timer 6 Register
CAPREL GPT2 Capture/Reload Register
T5IC GPT2 Timer 5 Interrupt Control Register
T6IC GPT2 Timer 6 Interrupt Control Register
CRIC GPT2 CAPREL Interrupt Control Register

Ports & Direction Control
Alternate Functions

Data Registers Control Registers Interrupt Control

T5 T5IC

DP3

P3

T6

CAPREL

T6IC

CRIC

T6CON

ODP3 E
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Figure 10-16
GPT2 Block Diagram
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GPT2 Core Timer T6  

The operation of the core timer T6 is controlled by its bitaddressable control register T6CON.   

T6CON (FF48H / A4H)   SFR Reset Value: 0000H  

Timer 6 Run Bit

The timer can be started or stopped by software through bit T6R (Timer T6 Run Bit). If T6R = ‘0’, the
timer stops. Setting T6R to ‘1’ will start the timer.
In gated timer mode, the timer will only run if T6R = ‘1’ and the gate is active (high or low, as
programmed).

Timer 6 Output Toggle Latch

An overflow or underflow of timer T6 will clock the toggle bit T6OTL in control register T6CON.
T6OTL can also be set or reset by software. T6OTL can be used in conjunction with the timer over/
underflows as an input for the counter function of the auxiliary timer T5.

Bit Function

T6I Timer 6 Input Selection
Depends on the Operating Mode, see respective sections.

T6M Timer 6 Mode Control (Basic Operating Mode)
0 0 0 : Timer Mode
0 0 1 : Reserved. Do not use this combination.
0 1 0 : Reserved. Do not use this combination.
0 1 1 : Reserved. Do not use this combination.
1 X X : Reserved. Do not use this combination.

T6R Timer 6 Run Bit
T6R = ‘0’: Timer / Counter 6 stops
T6R = ‘1’: Timer / Counter 6 runs

T6UD Timer 6 Up / Down Control
T6UD = ‘0’: Timer / Counter 6 counts up
T6UD = ‘1’: Timer / Counter 6 counts down

T6OTL Timer 6 Output Toggle Latch
Toggles on each overflow / underflow of T6. Can be set or reset by software.

T6SR Timer 6 Reload Mode Enable
T6SR = ‘0’: Reload from register CAPREL Disabled
T6SR = ‘1’: Reload from register CAPREL Enabled

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- rw - - rw rwrw - - -

T6RT6UD-----T6SR
T6

OTL - T6IT6M
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Timer 6 in Timer Mode

Timer mode for the core timer T6 is selected by setting bitfield T6M in register T6CON to ‘000B’. In
this mode, T6 is clocked with the internal system clock divided by a programmable prescaler, which
is selected by bit field T6I. The input frequency fT6 for timer T6 and its resolution rT6 are scaled
linearly with lower clock frequencies fCPU, as can be seen from the following formula:  

      

Figure 10-17
Block Diagram of Core Timer T6 in Timer Mode

The timer input frequencies, resolution and periods which result from the selected prescaler option
are listed in the table below. This table also applies to the auxiliary timer T5 in timer mode. Note that
some numbers may be rounded to 3 significant digits.

     

Note: Bitfield T6M in register T6CON will be ‘000B’ after reset. Do not modify this bitfield to any
other value.

GPT2 Timer Input Frequencies, Resolution and Periods

fCPU = 20 MHz Timer Input Selection T5I / T6I 

000B 001B 010B 011B 100B 101B 110B 111B

Prescaler factor 4 8 16 32 64 128 256 512

Input Frequency 5
MHz

2.5
MHz

1.25
MHz

625
kHz

312.5
kHz

156.25
kHz

78.125
kHz

39.06
kHz

Resolution 200 ns 400 ns 800 ns 1.6 µs 3.2 µs 6.4 µs 12.8 µs 25.6 µs

Period 13 ms 26 ms 52.5 ms 105 ms 210 ms 420 ms 840 ms 1.68 s

fT6 =
fCPU

4 × 2<T6I>
rT6 [µs] =

fCPU [MHz]

4 × 2<T6I>

GPT2 Timer T6
Interrupt
Request2n n=2...9CPU

Clock

T6R Up/Down T6OTL
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GPT2 Auxiliary Timer T5   

The auxiliary timer T5 can be configured for timer mode with the same options for the timer
frequencies as the core timer T6. In addition the auxiliary timer can be concatenated with the core
timer (operation in counter mode). Its contents may be captured to register CAPREL upon a
selectable trigger.

The individual configuration for timer T5 is determined by its bitaddressable control register T5CON.
Note that functions which are present in both timers of block GPT2 are controlled in the same bit
positions and in the same manner in each of the specific control registers.

Note: The auxiliary timer has no output toggle latch and no alternate output function.

T5CON (FF46H / A3H)   SFR   Reset Value: 0000H  

Bit Function

T5I Timer 5 Input Selection
Depends on the Operating Mode, see respective sections.

T5M Timer 5 Mode Control (Basic Operating Mode)
0 0 : Timer Mode
0 1 : Counter Mode
1 0 : Reserved. Do not use this combination.
1 1 : Reserved. Do not use this combination.

T5R Timer 5 Run Bit
0: Timer / Counter 5 stops
1: Timer / Counter 5 runs

T5UD Timer 5 Up / Down Control
T5UD = ‘0’: Timer / Counter 5 counts up
T5UD = ‘1’: Timer / Counter 5 counts down

CT3 Timer 3 Capture Trigger Enable
0 : Capture trigger from pin CAPIN
1 : Capture trigger from T3 input pins

CI Register CAPREL Capture Trigger Selection (depending on bit CT3)
0 0 : Capture disabled
0 1 : Positive transition (rising edge) on CAPIN or

any transition on T3IN
1 0 : Negative transition (falling edge) on CAPIN or

any transition on T3EUD
1 1 : Any transition (rising or falling edge) on CAPIN or

any transition on T3IN or T3EUD

T5
CLRT5SC -T5RT5UD

T5
UDE-- CT3

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- rw rw- rw - rw rw rwrw rw rw

T5IT5MCI
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Timer T5 in Counter Mode  

Counter mode for the auxiliary timer T5 is selected by setting bit field T5M in register T5CON to
‘001B’. In counter mode timer T5 can be clocked by a transition of timer T6’s output toggle latch
T6OTL (i.e. timer concatenation).

The event causing an increment or decrement of the timer can be a positive, a negative, or both a
positive and a negative transition at the toggle latch T6OTL.
Bit field T5I in control register T5CON selects the triggering transition (see table below).

   

Note: Only state transitions of T6OTL which are caused by the overflows/underflows of T6 will
trigger the counter function of T5. Modifications of T6OTL via software will NOT trigger the
counter function of T5.

T5CLR Timer 5 Clear Bit
0: Timer 5 not cleared on a capture
1: Timer 5 is cleared on a capture

T5SC Timer 5 Capture Mode Enable
0: Capture into register CAPREL disabled
1: Capture into register CAPREL enabled

GPT2 Auxiliary Timer (Counter Mode) Input Edge Selection

T5I Triggering Edge for Counter Increment / Decrement

X 0 0 None. Counter T5 is disabled

0 0 1 Reserved. Do not use this combination.

0 1 0 Reserved. Do not use this combination.

0 1 1 Reserved. Do not use this combination.

1 0 1 Positive transition (rising edge) of output toggle latch T6OTL

1 1 0 Negative transition (falling edge) of output toggle latch T6OTL

1 1 1 Any transition (rising or falling edge) of output toggle latch T6OTL

Bit Function
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Timer Concatenation   

Using the toggle bit T6OTL as a clock source for the auxiliary timer in counter mode concatenates
the core timer T6 with the auxiliary timer. Depending on which transition of T6OTL is selected to
clock the auxiliary timer, this concatenation forms a 32-bit or a 33-bit timer / counter.

• 32-bit Timer/Counter: If both a positive and a negative transition of T6OTL is used to clock the
auxiliary timer, this timer is clocked on every overflow/underflow of the core timer T6. Thus, the two
timers form a 32-bit timer.

• 33-bit Timer/Counter: If either a positive or a negative transition of T6OTL is selected to clock the
auxiliary timer, this timer is clocked on every second overflow/underflow of the core timer T6. This
configuration forms a 33-bit timer (16-bit core timer+T6OTL+16-bit auxiliary timer).

The count directions of the two concatenated timers are not required to be the same. This offers a
wide variety of different configurations.

   

Figure 10-18
Concatenation of Core Timer T6 and Auxiliary Timer T5
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GPT2 Capture/Reload Register CAPREL in Capture Mode   

This 16-bit register can be used as a capture register for the auxiliary timer T5. This mode is
selected by setting bit T5SC = ‘1’ in control register T5CON. Bit CT3 selects the external input pin
CAPIN or the input pins of timer T3 as the source for a capture trigger. Either a positive, a negative,
or both a positive and a negative transition at pin CAPIN can be selected to trigger the capture
function, or transitions on input T3IN or input T3EUD or both inputs T3IN and T3EUD. The active
edge is controlled by bit field CI in register T5CON.

The maximum input frequency for the capture trigger signal at CAPIN is fCPU/4. To ensure that a
transition of the capture trigger signal is correctly recognized, its level should be held for at least
4 fCPU cycles before it changes.

When the timer T3 capture trigger is enabled (CT3 = ’1’) register CAPREL captures the contents of
T5 upon transitions of the selected input(s). These values can be used to measure T3’s input
signals. This is useful e.g. when T3 operates in incremental interface mode, in order to derive
dynamic information (speed acceleration) from the input signals.

When a selected transition at the selected input pin(s) (CAPIN, T3IN, T3EUD) is detected, the
contents of the auxiliary timer T5 are latched into register CAPREL, and interrupt request flag CRIR
is set. With the same event, timer T5 can be cleared to 0000H. This option is controlled by bit T5CLR
in register T5CON. If T5CLR = ‘0’, the contents of timer T5 are not affected by a capture. If
T5CLR = ‘1’, timer T5 is cleared after the current timer value has been latched into register
CAPREL.

Note: Bit T5SC only controls whether a capture is performed or not. If T5SC = ‘0’, the selected
trigger event can still be used to clear timer T5 or to generate an interrupt request. This
interrupt is controlled by the CAPREL interrupt control register CRIC.

   

Figure 10-19
GPT2 Register CAPREL in Capture Mode
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GPT2 Capture/Reload Register CAPREL in Reload Mode

This 16-bit register can be used as a reload register for the core timer T6. This mode is selected by
setting bit T6SR = ‘1’ in register T6CON. The event causing a reload in this mode is an overflow or
underflow of the core timer T6.

When timer T6 overflows from FFFFH to 0000H (when counting up) or when it underflows from
0000H to FFFFH (when counting down), the value stored in register CAPREL is loaded into timer T6.
This will not set the interrupt request flag CRIR associated with the CAPREL register. However,
interrupt request flag T6IR will be set indicating the overflow/underflow of T6.

   

Figure 10-20
GPT2 Register CAPREL in Reload Mode
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GPT2 Capture/Reload Register CAPREL in Capture-And-Reload Mode

Since the reload function and the capture function of register CAPREL can be enabled individually
by bits T5SC and T6SR, the two functions can be enabled simultaneously by setting both bits. This
feature can be used to generate an output frequency that is a multiple of the input frequency.

   

Figure 10-21
GPT2 Register CAPREL in Capture-And-Reload Mode

This combined mode can be used to detect consecutive external events which may occur
aperiodically, but where a finer resolution, that means, more ’ticks’ within the time between two
external events is required.

For this purpose, the time between the external events is measured using timer T5 and the CAPREL
register. Timer T5 runs in timer mode counting up with a frequency of e.g. fCPU/32. The external
events are applied to pin CAPIN. When an external event occurs, the timer T5 contents are latched
into register CAPREL, and timer T5 is cleared (T5CLR = ‘1’). Thus, register CAPREL always
contains the correct time between two events, measured in timer T5 increments. Timer T6, which
runs in timer mode counting down with a frequency of e.g. fCPU/4, uses the value in register CAPREL
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to perform a reload on underflow. This means, the value in register CAPREL represents the time
between two underflows of timer T6, now measured in timer T6 increments. Since timer T6 runs
8 times faster than timer T5, it will underflow 8 times within the time between two external events.
Thus, the underflow signal of timer T6 generates 8 ’ticks’. Upon each underflow, the interrupt
request flag T6IR will be set and bit T6OTL will be toggled.

Interrupt Control for GPT2 Timers and CAPREL

When a timer overflows from FFFFH to 0000H (when counting up), or when it underflows from 0000H

to FFFFH (when counting down), its interrupt request flag (T5IR or T6IR) in register TxIC will be set.
Whenever a transition according to the selection in bit field CI is detected at pin CAPIN, interrupt
request flag CRIR in register CRIC is set. Setting any request flag will cause an interrupt to the
respective timer or CAPREL interrupt vector (T5INT, T6INT or CRINT) or trigger a PEC service, if
the respective interrupt enable bit (T5IE or T6IE in register TxIC, CRIE in register CRIC) is set.
There is an interrupt control register for each of the two timers and for the CAPREL register.

T5IC (FF66H / B3H)   SFR Reset Value: - - 00H 

T6IC (FF68H / B4H)   SFR Reset Value: - - 00H 

CRIC (FF6AH / B5H)   SFR Reset Value: - - 00H 

   

Note: Please refer to the general Interrupt Control Register description for an explanation of the
control fields.

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

T5IET5IR GLVLILVL

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

T6IET6IR GLVLILVL

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

CRIECRIR GLVLILVL
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11 The Asynchronous/Synchronous Serial Interface   

The Asynchronous/Synchronous Serial Interface ASC0 provides serial communication between the
C161RI and other microcontrollers, microprocessors or external peripherals.

The ASC0 supports full-duplex asynchronous communication up to 500 KBaud and half-duplex
synchronous communication up to 2 MBaud (@ 16 MHz CPU clock). In synchronous mode, data
are transmitted or received synchronous to a shift clock which is generated by the C161RI. In
asynchronous mode, 8- or 9-bit data transfer, parity generation, and the number of stop bits can be
selected. Parity, framing, and overrun error detection is provided to increase the reliability of data
transfers. Transmission and reception of data is double-buffered. For multiprocessor
communication, a mechanism to distinguish address from data bytes is included. Testing is
supported by a loop-back option. A 13-bit baud rate generator provides the ASC0 with a separate
serial clock signal.

   

Figure 11-1
SFRs and Port Pins associated with ASC0

The operating mode of the serial channel ASC0 is controlled by its bitaddressable control register
S0CON. This register contains control bits for mode and error check selection, and status flags for
error identification.
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S0CON (FFB0H / D8H)   SFR  Reset Value: 0000H  

Bit Function

S0M ASC0 Mode Control
0 0 0 : 8-bit data synchronous operation
0 0 1 : 8-bit data async. operation
0 1 0 : Reserved. Do not use this combination!
0 1 1 : 7-bit data + parity async. operation
1 0 0 : 9-bit data async. operation
1 0 1 : 8-bit data + wake up bit async. operation
1 1 0 : Reserved. Do not use this combination!
1 1 1 : 8-bit data + parity async. operation

S0STP Number of Stop Bits Selection async. operation
0 : One stop bit
1 : Two stop bits

S0REN Receiver Enable Bit
0 : Receiver disabled
1 : Receiver enabled

(Reset by hardware after reception of byte in synchronous mode)

S0PEN Parity Check Enable Bit async. operation
0 : Ignore parity
1 : Check parity

S0FEN Framing Check Enable Bit async. operation
0 : Ignore framing errors
1 : Check framing errors

S0OEN Overrun Check Enable Bit
0 : Ignore overrun errors
1 : Check overrun errors

S0PE Parity Error Flag
Set by hardware on a parity error (S0PEN = ’1’). Must be reset by software.

S0FE Framing Error Flag
Set by hardware on a framing error (S0FEN = ’1’). Must be reset by software.

S0OE Overrun Error Flag
Set by hardware on an overrun error (S0OEN = ’1’). Must be reset by software.

S0ODD Parity Selection Bit
0 : Even parity (parity bit set on odd number of ‘1’s in data)
1 : Odd parity (parity bit set on even number of ‘1’s in data)

S0FE

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw- rw rw rwrw rw rw rw

-S0LBS0R S0PE
S0

STP
S0

REN
S0

PEN
S0

FEN
S0

OEN

rw rw

S0OE
S0

ODD
S0

BRS S0M
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A transmission is started by writing to the Transmit Buffer register S0TBUF (via an instruction or a
PEC data transfer). Only the number of data bits which is determined by the selected operating
mode will actually be transmitted, i.e. bits written to positions 9 through 15 of register S0TBUF are
always insignificant. After a transmission has been completed, the transmit buffer register is cleared
to 0000H.
Data transmission is double-buffered, so a new character may be written to the transmit buffer
register, before the transmission of the previous character is complete. This allows the transmission
of characters back-to-back without gaps.

Data reception is enabled by the Receiver Enable Bit S0REN. After reception of a character has
been completed, the received data and, if provided by the selected operating mode, the received
parity bit can be read from the (read-only) Receive Buffer register S0RBUF. Bits in the upper half of
S0RBUF which are not valid in the selected operating mode will be read as zeros.
Data reception is double-buffered, so that reception of a second character may already begin before
the previously received character has been read out of the receive buffer register. In all modes,
receive buffer overrun error detection can be selected through bit S0OEN. When enabled, the
overrun error status flag S0OE and the error interrupt request flag S0EIR will be set when the
receive buffer register has not been read by the time reception of a second character is complete.
The previously received character in the receive buffer is overwritten.

The Loop-Back option (selected by bit S0LB) allows the data currently being transmitted to be
received simultaneously in the receive buffer. This may be used to test serial communication
routines at an early stage without having to provide an external network. In loop-back mode the
alternate input/output functions of the Port 3 pins are not necessary.

Note: Serial data transmission or reception is only possible when the Baud Rate Generator Run Bit
S0R is set to ‘1’. Otherwise the serial interface is idle.
Do not program the mode control field S0M in register S0CON to one of the reserved
combinations to avoid unpredictable behavior of the serial interface.

S0BRS Baudrate Selection Bit
0 : Divide clock by reload-value + constant (depending on mode)
1 : Additionally reduce serial clock to 2/3rd

S0LB LoopBack Mode Enable Bit
0 : Standard transmit/receive mode
1 : Loopback mode enabled

S0R Baudrate Generator Run Bit
0 : Baudrate generator disabled (ASC0 inactive)
1 : Baudrate generator enabled

Bit Function
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11.1 Asynchronous Operation   

Asynchronous mode supports full-duplex communication, where both transmitter and receiver use
the same data frame format and the same baud rate. Data is transmitted on pin TXD0/P3.10 and
received on pin RXD0/P3.11. These signals are alternate functions of Port 3 pins. 

   

Figure 11-2
Asynchronous Mode of Serial Channel ASC0
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Asynchronous Data Frames

8-bit data frames either consist of 8 data bits D7 … D0 (S0M = ’001B’), or of 7 data bits D6 … D0
plus an automatically generated parity bit (S0M = ’011B’). Parity may be odd or even, depending on
bit S0ODD in register S0CON. An even parity bit will be set, if the modulo-2-sum of the 7 data bits
is ‘1’. An odd parity bit will be cleared in this case. Parity checking is enabled via bit S0PEN (always
OFF in 8-bit data mode). The parity error flag S0PE will be set along with the error interrupt request
flag, if a wrong parity bit is received. The parity bit itself will be stored in bit S0RBUF.7.

   

Figure 11-3
Asynchronous 8-bit Data Frames

9-bit data frames either consist of 9 data bits D8 … D0 (S0M = ’100B’), of 8 data bits D7 … D0
plus an automatically generated parity bit (S0M = ’111B’) or of 8 data bits D7 … D0 plus wake-up bit
(S0M = ’101B’). Parity may be odd or even, depending on bit S0ODD in register S0CON. An even
parity bit will be set, if the modulo-2-sum of the 8 data bits is ‘1’. An odd parity bit will be cleared in
this case. Parity checking is enabled via bit S0PEN (always OFF in 9-bit data and wake-up mode).
The parity error flag S0PE will be set along with the error interrupt request flag, if a wrong parity bit
is received. The parity bit itself will be stored in bit S0RBUF.8.

In wake-up mode received frames are only transferred to the receive buffer register, if the 9th bit
(the wake-up bit) is ‘1’. If this bit is ‘0’, no receive interrupt request will be activated and no data will
be transferred.

This feature may be used to control communication in multi-processor system:
When the master processor wants to transmit a block of data to one of several slaves, it first sends
out an address byte which identifies the target slave. An address byte differs from a data byte in that
the additional 9th bit is a '1' for an address byte and a '0' for a data byte, so no slave will be
interrupted by a data 'byte'. An address 'byte' will interrupt all slaves (operating in 8-bit data + wake-
up bit mode), so each slave can examine the 8 LSBs of the received character (the address). The
addressed slave will switch to 9-bit data mode (e.g. by clearing bit S0M.0), which enables it to also
receive the data bytes that will be coming (having the wake-up bit cleared). The slaves that were not
being addressed remain in 8-bit data + wake-up bit mode, ignoring the following data bytes.
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Figure 11-4
Asynchronous 9-bit Data Frames

Asynchronous transmission begins at the next overflow of the divide-by-16 counter (see figure
above), provided that S0R is set and data has been loaded into S0TBUF. The transmitted data
frame consists of three basic elements:   

• the start bit
• the data field (8 or 9 bits, LSB first, including a parity bit, if selected)
• the delimiter (1 or 2 stop bits)

Data transmission is double buffered. When the transmitter is idle, the transmit data loaded into
S0TBUF is immediately moved to the transmit shift register thus freeing S0TBUF for the next data
to be sent. This is indicated by the transmit buffer interrupt request flag S0TBIR being set. S0TBUF
may now be loaded with the next data, while transmission of the previous one is still going on.

The transmit interrupt request flag S0TIR will be set before the last bit of a frame is transmitted, i.e.
before the first or the second stop bit is shifted out of the transmit shift register.
The transmitter output pin TXD0/P3.10 must be configured for alternate data output, i.e. P3.10 = ’1’
and DP3.10 = ’1’.
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Asynchronous reception is initiated by a falling edge (1-to-0 transition) on pin RXD0, provided
that bits S0R and S0REN are set. The receive data input pin RXD0 is sampled at 16 times the rate
of the selected baud rate. A majority decision of the 7th, 8th and 9th sample determines the effective
bit value. This avoids erroneous results that may be caused by noise.

If the detected value is not a ’0’ when the start bit is sampled, the receive circuit is reset and waits
for the next 1-to-0 transition at pin RXD0. If the start bit proves valid, the receive circuit continues
sampling and shifts the incoming data frame into the receive shift register.

When the last stop bit has been received, the content of the receive shift register is transferred to
the receive data buffer register S0RBUF. Simultaneously, the receive interrupt request flag S0RIR
is set after the 9th sample in the last stop bit time slot (as programmed), regardless whether valid
stop bits have been received or not. The receive circuit then waits for the next start bit (1-to-0
transition) at the receive data input pin.  

The receiver input pin RXD0/P3.11 must be configured for input, i.e. DP3.11 = ’0’.

Asynchronous reception is stopped by clearing bit S0REN. A currently received frame is completed
including the generation of the receive interrupt request and an error interrupt request, if
appropriate. Start bits that follow this frame will not be recognized.

Note: In wake-up mode received frames are only transferred to the receive buffer register, if the 9th
bit (the wake-up bit) is ‘1’. If this bit is ‘0’, no receive interrupt request will be activated and no
data will be transferred.
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11.2 Synchronous Operation   

Synchronous mode supports half-duplex communication, basically for simple IO expansion via shift
registers. Data is transmitted and received via pin RXD0/P3.11, while pin TXD0/P3.10 outputs the
shift clock. These signals are alternate functions of Port 3 pins. Synchronous mode is selected with
S0M = ’000B’.

8 data bits are transmitted or received synchronous to a shift clock generated by the internal baud
rate generator. The shift clock is only active as long as data bits are transmitted or received. 

   

Figure 11-5
Synchronous Mode of Serial Channel ASC0
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Synchronous transmission begins within 4 state times after data has been loaded into S0TBUF,
provided that S0R is set and S0REN = ’0’ (half-duplex, no reception). Data transmission is double
buffered. When the transmitter is idle, the transmit data loaded into S0TBUF is immediately moved
to the transmit shift register thus freeing S0TBUF for the next data to be sent. This is indicated by
the transmit buffer interrupt request flag S0TBIR being set. S0TBUF may now be loaded with the
next data, while transmission of the previous one is still going on. The data bits are transmitted
synchronous with the shift clock. After the bit time for the 8th data bit, both pins TXD0 and RXD0 will
go high, the transmit interrupt request flag S0TIR is set, and serial data transmission stops.  

Pin TXD0/P3.10 must be configured for alternate data output, i.e. P3.10 = ’1’ and DP3.10 = ’1’, in
order to provide the shift clock. Pin RXD0/P3.11 must also be configured for output (P3.11 = ’1’ and
DP3.11 = ’1’) during transmission.

Synchronous reception is initiated by setting bit S0REN = ’1’. If bit S0R = 1, the data applied at
pin RXD0 are clocked into the receive shift register synchronous to the clock which is output at pin
TXD0. After the 8th bit has been shifted in, the content of the receive shift register is transferred to
the receive data buffer S0RBUF, the receive interrupt request flag S0RIR is set, the receiver enable
bit S0REN is reset, and serial data reception stops.  

Pin TXD0/P3.10 must be configured for alternate data output, i.e. P3.10 = ’1’ and DP3.10 = ’1’, in
order to provide the shift clock. Pin RXD0/P3.11 must be configured as alternate data input
(DP3.11 = ’0’).

Synchronous reception is stopped by clearing bit S0REN. A currently received byte is completed
including the generation of the receive interrupt request and an error interrupt request, if
appropriate. Writing to the transmit buffer register while a reception is in progress has no effect on
reception and will not start a transmission.

If a previously received byte has not been read out of the receive buffer register at the time the
reception of the next byte is complete, both the error interrupt request flag S0EIR and the overrun
error status flag S0OE will be set, provided the overrun check has been enabled by bit S0OEN.
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11.3 Hardware Error Detection Capabilities  

To improve the safety of serial data exchange, the serial channel ASC0 provides an error interrupt
request flag, which indicates the presence of an error, and three (selectable) error status flags in
register S0CON, which indicate which error has been detected during reception. Upon completion
of a reception, the error interrupt request flag S0EIR will be set simultaneously with the receive
interrupt request flag S0RIR, if one or more of the following conditions are met:

• If the framing error detection enable bit S0FEN is set and any of the expected stop bits is not
high, the framing error flag S0FE is set, indicating that the error interrupt request is due to a
framing error (Asynchronous mode only).

• If the parity error detection enable bit S0PEN is set in the modes where a parity bit is received,
and the parity check on the received data bits proves false, the parity error flag S0PE is set,
indicating that the error interrupt request is due to a parity error (Asynchronous mode only).

• If the overrun error detection enable bit S0OEN is set and the last character received was not
read out of the receive buffer by software or PEC transfer at the time the reception of a new
frame is complete, the overrun error flag S0OE is set indicating that the error interrupt request
is due to an overrun error (Asynchronous and synchronous mode).

11.4 ASC0 Baud Rate Generation   

The serial channel ASC0 has its own dedicated 13-bit baud rate generator with 13-bit reload
capability, allowing baud rate generation independent of the GPT timers.

The baud rate generator is clocked with the CPU clock divided by 2 (fCPU/2). The timer is counting
downwards and can be started or stopped through the Baud Rate Generator Run Bit S0R in register
S0CON. Each underflow of the timer provides one clock pulse to the serial channel. The timer is
reloaded with the value stored in its 13-bit reload register each time it underflows. The resulting
clock is again divided according to the operating mode and controlled by the Baudrate Selection Bit
S0BRS. If S0BRS = ’1’, the clock signal is additionally divided to 2/3rd of its frequency (see formulas
and table). So the baud rate of ASC0 is determined by the CPU clock, the reload value, the value
of S0BRS and the operating mode (asynchronous or synchronous).

Register S0BG is the dual-function Baud Rate Generator/Reload register. Reading S0BG returns
the content of the timer (bits 15 … 13 return zero), while writing to S0BG always updates the reload
register (bits 15 … 13 are insignificant).  

An auto-reload of the timer with the content of the reload register is performed each time S0BG is
written to. However, if S0R = ’0’ at the time the write operation to S0BG is performed, the timer will
not be reloaded until the first instruction cycle after S0R = ’1’.
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Asynchronous Mode Baud Rates

For asynchronous operation, the baud rate generator provides a clock with 16 times the rate of the
established baud rate. Every received bit is sampled at the 7th, 8th and 9th cycle of this clock. The
baud rate for asynchronous operation of serial channel ASC0 and the required reload value for a
given baudrate can be determined by the following formulas:   

<S0BRL> represents the content of the reload register, taken as unsigned 13-bit integer,
<S0BRS> represents the value of bit S0BRS (i.e. ‘0’ or ‘1’), taken as integer.

The maximum baud rate that can be achieved for the asynchronous modes when using a CPU clock
of 16 MHz is 500 KBaud. The table below lists various commonly used baud rates together with the
required reload values and the deviation errors compared to the intended baudrate. 

Note: The deviation errors given in the table above are rounded. Using a baudrate crystal
(e.g. 18.432 MHz) will provide correct baudrates without deviation errors.

Synchronous Mode Baud Rates

For synchronous operation, the baud rate generator provides a clock with 4 times the rate of the
established baud rate. The baud rate for synchronous operation of serial channel ASC0 can be
determined by the following formula:  

<S0BRL> represents the content of the reload register, taken as unsigned 13-bit integers,
<S0BRS> represents the value of bit S0BRS (i.e. ‘0’ or ‘1’), taken as integer.

The maximum baud rate that can be achieved in synchronous mode when using a CPU clock of
16 MHz is 2 MBaud.

ASC0 Baudrate Generation

Baud Rate S0BRS = ‘0’, fCPU = 16 MHz S0BRS = ‘1’, fCPU = 16 MHz

Deviation Error Reload Value Deviation Error Reload Value

500 KBaud ± 0.0% 0000H --- ---

19.2 KBaud + 0.2% / − 3.5% 0019H / 001AH + 2.1% / − 3.5% 0010H / 0011H

9600 Baud + 0.2% / − 1.7% 0033H / 0034H + 2.1% / − 0.8% 0021H / 0022H

4800 Baud + 0.2% / − 0.8% 0067H / 0068H + 0.6% / − 0.8% 0044H / 0045H

2400 Baud + 0.2% / − 0.3% 00CFH / 00D0H + 0.6% / − 0.1% 0089H / 008AH

1200 Baud + 0.4% / − 0.1% 019FH / 01A0H + 0.3% / − 0.1% 0114H / 0115H

600 Baud + 0.0% / − 0.1% 0340H / 0341H + 0.1% / − 0.1% 022AH / 022BH

61 Baud + 0.1% 1FFFH + 0.0% / − 0.0% 115BH / 115CH

BAsync =
fCPU

16 × (2 + <S0BRS>) × (<S0BRL> + 1)
S0BRL =  (

fCPU

16 × (2 + <S0BRS>) × BAsync
) - 1

BSync = S0BRL =  (
fCPU

4 × (2 + <S0BRS>) × BSync
) - 1

fCPU

4 × (2 + <S0BRS>) × (<S0BRL> + 1)
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11.5 ASC0 Interrupt Control   

Four bit addressable interrupt control registers are provided for serial channel ASC0. Register
S0TIC controls the transmit interrupt, S0TBIC controls the transmit buffer interrupt, S0RIC controls
the receive interrupt and S0EIC controls the error interrupt of serial channel ASC0. Each interrupt
source also has its own dedicated interrupt vector. S0TINT is the transmit interrupt vector, S0TBINT
is the transmit interrupt vector, S0RINT is the receive interrupt vector, and S0EINT is the error
interrupt vector.

The cause of an error interrupt request (framing, parity, overrun error) can be identified by the error
status flags in control register S0CON.

Note: In contrary to the error interrupt request flag S0EIR, the error status flags S0FE/S0PE/S0OE
are not reset automatically upon entry into the error interrupt service routine, but must be
cleared by software.

   

S0TIC (FF6CH / B6H)   SFR Reset Value: - - 00H 

S0RIC (FF6EH / B7H)   SFR Reset Value: - - 00H 

S0EIC (FF70H / B8H)   SFR Reset Value: - - 00H 

S0TBIC (F19CH / CEH)   ESFR Reset Value: - - 00H 

Note: Please refer to the general Interrupt Control Register description for an explanation of the
control fields.

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

S0TIES0TIR GLVLILVL

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

S0RIES0RIR GLVLILVL

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -
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S0
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S0
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5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

GLVLILVL
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Using the ASC0 Interrupts

For normal operation (i.e. besides the error interrupt) the ASC0 provides three interrupt requests to
control data exchange via this serial channel:

• S0TBIR is activated when data is moved from S0TBUF to the transmit shift register.
• S0TIR is activated before the last bit of an asynchronous frame is transmitted, or

after the last bit of a synchronous frame has been transmitted.
• S0RIR is activated when the received frame is moved to S0RBUF.

While the task of the receive interrupt handler is quite clear, the transmitter is serviced by two
interrupt handlers. This provides advantages for the servicing software.

For single transfers is sufficient to use the transmitter interrupt (S0TIR), which indicates that the
previously loaded data has been transmitted, except for the last bit of an asynchronous frame.

For multiple back-to-back transfers it is necessary to load the following piece of data at last until
the time the last bit of the previous frame has been transmitted. In asynchronous mode this leaves
just one bit-time for the handler to respond to the transmitter interrupt request, in synchronous mode
it is impossible at all.
Using the transmit buffer interrupt (S0TBIR) to reload transmit data gives the time to transmit a
complete frame for the service routine, as S0TBUF may be reloaded while the previous data is still
being transmitted.

   

Figure 11-6
ASC0 Interrupt Generation

As shown in the figure above, S0TBIR is an early trigger for the reload routine, while S0TIR
indicates the completed transmission. Software using handshake therefore should rely on S0TIR at
the end of a data block to make sure that all data has really been transmitted.
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12 The High-Speed Synchronous Serial Interface   

The High-Speed Synchronous Serial Interface SSC provides flexible high-speed serial
communication between the C161RI and other microcontrollers, microprocessors or external
peripherals.

The SSC supports full-duplex and half-duplex synchronous communication up to 4 MBaud
(@ 16 MHz CPU clock). The serial clock signal can be generated by the SSC itself (master mode)
or be received from an external master (slave mode). Data width, shift direction, clock polarity and
phase are programmable. This allows communication with SPI-compatible devices. Transmission
and reception of data is double-buffered. A 16-bit baud rate generator provides the SSC with a
separate serial clock signal.

The high-speed synchronous serial interface can be configured in a very flexible way, so it can be
used with other synchronous serial interfaces (e.g. the ASC0 in synchronous mode), serve for
master/slave or multimaster interconnections or operate compatible with the popular SPI interface.
So it can be used to communicate with shift registers (IO expansion), peripherals (e.g. EEPROMs
etc.) or other controllers (networking). The SSC supports half-duplex and full-duplex
communication. Data is transmitted or received on pins MTSR/P3.9 (Master Transmit / Slave
Receive) and MRST/P3.8 (Master Receive / Slave Transmit). The clock signal is output or input on
pin SCLK/P3.13. These pins are alternate functions of Port 3 pins.

   

Figure 12-1
SFRs and Port Pins associated with the SSC
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Figure 12-2
Synchronous Serial Channel SSC Block Diagram

The operating mode of the serial channel SSC is controlled by its bit-addressable control register
SSCCON. This register serves for two purposes:  

• during programming (SSC disabled by SSCEN = ’0’) it provides access to a set of control bits,
• during operation (SSC enabled by SSCEN = ’1’) it provides access to a set of status flags.
Register SSCCON is shown below in each of the two modes.
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SSCCON (FFB2H / D9H)   SFR Reset Value: 0000H  

Bit Function (Programming Mode, SSCEN = ‘0’)

SSCBM SSC Data Width Selection
0 : Reserved. Do not use this combination.
1 … 15 : Transfer Data Width is 2 … 16 bit (<SSCBM> + 1)

SSCHB SSC Heading Control Bit
0 : Transmit/Receive LSB First
1 : Transmit/Receive MSB First

SSCPH SSC Clock Phase Control Bit
0 : Shift transmit data on the leading clock edge, latch on trailing edge
1 : Latch receive data on leading clock edge, shift on trailing edge

SSCPO SSC Clock Polarity Control Bit
0 : Idle clock line is low, leading clock edge is low-to-high transition
1 : Idle clock line is high, leading clock edge is high-to-low transition

SSCTEN SSC Transmit Error Enable Bit
0 : Ignore transmit errors
1 : Check transmit errors

SSCREN SSC Receive Error Enable Bit
0 : Ignore receive errors
1 : Check receive errors

SSCPEN SSC Phase Error Enable Bit
0 : Ignore phase errors
1 : Check phase errors

SSCBEN SSC Baudrate Error Enable Bit
0 : Ignore baudrate errors
1 : Check baudrate errors

SSCAREN SSC Automatic Reset Enable Bit
0 : No additional action upon a baudrate error
1 : The SSC is automatically reset upon a baudrate error

SSCMS SSC Master Select Bit
0 : Slave Mode. Operate on shift clock received via SCLK.
1 : Master Mode. Generate shift clock and output it via SCLK.

SSCEN SSC Enable Bit = ‘0’
Transmission and reception disabled. Access to control bits.

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rwrw rw - rwrw rw - rw
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SSCCON (FFB2H / D9H)   SFR Reset Value: 0000H  

Note: • The target of an access to SSCCON (control bits or flags) is determined by the state of
SSCEN prior to the access, i.e. writing C057H to SSCCON in programming mode
(SSCEN = ’0’) will initialize the SSC (SSCEN was ‘0’) and then turn it on (SSCEN = ’1’).
• When writing to SSCCON, make sure that reserved locations receive zeros.

The shift register of the SSC is connected to both the transmit pin and the receive pin via the pin
control logic (see block diagram). Transmission and reception of serial data is synchronized and
takes place at the same time, i.e. the same number of transmitted bits is also received. Transmit
data is written into the Transmit Buffer SSCTB. It is moved to the shift register as soon as this is
empty. An SSC-master (SSCMS = ’1’) immediately begins transmitting, while an SSC-slave
(SSCMS = ’0’) will wait for an active shift clock. When the transfer starts, the busy flag SSCBSY is
set and a transmit interrupt request (SSCTIR) will be generated to indicate that SSCTB may be
reloaded again. When the programmed number of bits (2 … 16) has been transferred, the contents
of the shift register are moved to the Receive Buffer SSCRB and a receive interrupt request
(SSCRIR) will be generated. If no further transfer is to take place (SSCTB is empty), SSCBSY will
be cleared at the same time. Software should not modify SSCBSY, as this flag is hardware
controlled.

Bit Function (Operating Mode, SSCEN = ‘1’)

SSCBC SSC Bit Count Field
Shift counter is updated with every shifted bit. Do not write to!!!

SSCTE SSC Transmit Error Flag
1 : Transfer starts with the slave’s transmit buffer not being updated

SSCRE SSC Receive Error Flag
1 : Reception completed before the receive buffer was read

SSCPE SSC Phase Error Flag
1 : Received data changes around sampling clock edge

SSCBE SSC Baudrate Error Flag
1 : More than factor 2 or 0.5 between Slave’s actual and expected

baudrate

SSCBSY SSC Busy Flag
Set while a transfer is in progress. Do not write to!!!

SSCMS SSC Master Select Bit
0 : Slave Mode. Operate on shift clock received via SCLK.
1 : Master Mode. Generate shift clock and output it via SCLK.

SSCEN SSC Enable Bit = ‘1’
Transmission and reception enabled. Access to status flags and M/S control.

5 4 3 2 1 011 10 9 8 7 615 14 13 12
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Note: Only one SSC (etc.) can be master at a given time.

The transfer of serial data bits can be programmed in many respects:

• the data width can be chosen from 2 bits to 16 bits
• transfer may start with the LSB or the MSB
• the shift clock may be idle low or idle high
• data bits may be shifted with the leading or trailing edge of the clock signal
• the baudrate may be set from 122 Bd up to 4 MBd (@ 16 MHz CPU clock)
• the shift clock can be generated (master) or received (slave)

This allows the adaptation of the SSC to a wide range of applications, where serial data transfer is
required.

The Data Width Selection supports the transfer of frames of any length, from 2-bit “characters” up
to 16-bit “characters”. Starting with the LSB (SSCHB = ’0’) allows communication e.g. with ASC0
devices in synchronous mode (C166 family) or 8051 like serial interfaces. Starting with the MSB
(SSCHB = ’1’) allows operation compatible with the SPI interface.
Regardless which data width is selected and whether the MSB or the LSB is transmitted first, the
transfer data is always right aligned in registers SSCTB and SSCRB, with the LSB of the transfer
data in bit 0 of these registers. The data bits are rearranged for transfer by the internal shift register
logic. The unselected bits of SSCTB are ignored, the unselected bits of SSCRB will be not valid and
should be ignored by the receiver service routine.

The Clock Control allows the adaptation of transmit and receive behavior of the SSC to a variety
of serial interfaces. A specific clock edge (rising or falling) is used to shift out transmit data, while the
other clock edge is used to latch in receive data. Bit SSCPH selects the leading edge or the trailing
edge for each function. Bit SSCPO selects the level of the clock line in the idle state. So for an idle-
high clock the leading edge is a falling one, a 1-to-0 transition. The figure below is a summary.
   

Figure 12-3
Serial Clock Phase and Polarity Options
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12.1 Full-Duplex Operation   

The different devices are connected through three lines. The definition of these lines is always
determined by the master: The line connected to the master’s data output pin MTSR is the transmit
line, the receive line is connected to its data input line MRST, and the clock line is connected to pin
SCLK. Only the device selected for master operation generates and outputs the serial clock on pin
SCLK. All slaves receive this clock, so their pin SCLK must be switched to input mode
(DP3.13 = ’0’). The output of the master’s shift register is connected to the external transmit line,
which in turn is connected to the slaves’ shift register input. The output of the slaves’ shift register
is connected to the external receive line in order to enable the master to receive the data shifted out
of the slave. The external connections are hard-wired, the function and direction of these pins is
determined by the master or slave operation of the individual device.

Note: The shift direction shown in the figure applies for MSB-first operation as well as for LSB-first
operation.

When initializing the devices in this configuration, select one device for master operation
(SSCMS = ’1’), all others must be programmed for slave operation (SSCMS = ’0’). Initialization
includes the operating mode of the device's SSC and also the function of the respective port lines
(see “Port Control”).

   

Figure 12-4
SSC Full Duplex Configuration
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The data output pins MRST of all slave devices are connected together onto the one receive line in
this configuration. During a transfer each slave shifts out data from its shift register. There are two
ways to avoid collisions on the receive line due to different slave data:

Only one slave drives the line, i.e. enables the driver of its MRST pin. All the other slaves have to
program there MRST pins to input. So only one slave can put its data onto the master’s receive line.
Only receiving of data from the master is possible. The master selects the slave device from which
it expects data either by separate select lines, or by sending a special command to this slave. The
selected slave then switches its MRST line to output, until it gets a deselection signal or command.

The slaves use open drain output on MRST. This forms a Wired-AND connection. The receive
line needs an external pullup in this case. Corruption of the data on the receive line sent by the
selected slave is avoided, when all slaves which are not selected for transmission to the master only
send ones (‘1’). Since this high level is not actively driven onto the line, but only held through the
pullup device, the selected slave can pull this line actively to a low level when transmitting a zero bit.
The master selects the slave device from which it expects data either by separate select lines, or by
sending a special command to this slave.

After performing all necessary initializations of the SSC, the serial interfaces can be enabled. For a
master device, the alternate clock line will now go to its programmed polarity. The alternate data line
will go to either '0' or '1', until the first transfer will start. After a transfer the alternate data line will
always remain at the logic level of the last transmitted data bit.

When the serial interfaces are enabled, the master device can initiate the first data transfer by
writing the transmit data into register SSCTB. This value is copied into the shift register (which is
assumed to be empty at this time), and the selected first bit of the transmit data will be placed onto
the MTSR line on the next clock from the baudrate generator (transmission only starts, if
SSCEN = ’1’). Depending on the selected clock phase, also a clock pulse will be generated on the
SCLK line. With the opposite clock edge the master at the same time latches and shifts in the data
detected at its input line MRST. This “exchanges” the transmit data with the receive data. Since the
clock line is connected to all slaves, their shift registers will be shifted synchronously with the
master's shift register, shifting out the data contained in the registers, and shifting in the data
detected at the input line. After the preprogrammed number of clock pulses (via the data width
selection) the data transmitted by the master is contained in all slaves’ shift registers, while the
master's shift register holds the data of the selected slave. In the master and all slaves the content
of the shift register is copied into the receive buffer SSCRB and the receive interrupt flag SSCRIR
is set.  

A slave device will immediately output the selected first bit (MSB or LSB of the transfer data) at pin
MRST, when the content of the transmit buffer is copied into the slave's shift register. It will not wait
for the next clock from the baudrate generator, as the master does. The reason for this is that,
depending on the selected clock phase, the first clock edge generated by the master may be
already used to clock in the first data bit. So the slave's first data bit must already be valid at this
time.
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Note: On the SSC always a transmission and a reception takes place at the same time, regardless
whether valid data has been transmitted or received. This is different e.g. from asynchronous
reception on ASC0.

The initialization of the SCLK pin on the master requires some attention in order to avoid
undesired clock transitions, which may disturb the other receivers. The state of the internal alternate
output lines is ’1’ as long as the SSC is disabled. This alternate output signal is ANDed with the
respective port line output latch. Enabling the SSC with an idle-low clock (SSCPO = ’0’) will drive
the alternate data output and (via the AND) the port pin SCLK immediately low. To avoid this, use
the following sequence:

• select the clock idle level (SSCPO = ’x’)
• load the port output latch with the desired clock idle level (P3.13 = ’x’)
• switch the pin to output (DP3.13 = ’1’)
• enable the SSC (SSCEN = ’1’)
• if SSCPO = ’0’: enable alternate data output (P3.13 = ’1’)

The same mechanism as for selecting a slave for transmission (separate select lines or special
commands) may also be used to move the role of the master to another device in the network. In
this case the previous master and the future master (previous slave) will have to toggle their
operating mode (SSCMS) and the direction of their port pins (see description above).

12.2 Half Duplex Operation   

In a half duplex configuration only one data line is necessary for both receiving and transmitting of
data. The data exchange line is connected to both pins MTSR and MRST of each device, the clock
line is connected to the SCLK pin.

The master device controls the data transfer by generating the shift clock, while the slave devices
receive it. Due to the fact that all transmit and receive pins are connected to the one data exchange
line, serial data may be moved between arbitrary stations.

Similar to full duplex mode there are two ways to avoid collisions on the data exchange line:

• only the transmitting device may enable its transmit pin driver

• the non-transmitting devices use open drain output and only send ones.

Since the data inputs and outputs are connected together, a transmitting device will clock in its own
data at the input pin (MRST for a master device, MTSR for a slave). By these means any corruptions
on the common data exchange line are detected, where the received data is not equal to the
transmitted data.
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Figure 12-5
SSC Half Duplex Configuration

Continuous Transfers

When the transmit interrupt request flag is set, it indicates that the transmit buffer SSCTB is empty
and ready to be loaded with the next transmit data. If SSCTB has been reloaded by the time the
current transmission is finished, the data is immediately transferred to the shift register and the next
transmission will start without any additional delay. On the data line there is no gap between the two
successive frames. E.g. two byte transfers would look the same as one word transfer. This feature
can be used to interface with devices which can operate with or require more than 16 data bits per
transfer. It is just a matter of software, how long a total data frame length can be. This option can
also be used e.g. to interface to byte-wide and word-wide devices on the same serial bus.

Note: Of course, this can only happen in multiples of the selected basic data width, since it would
require disabling/enabling of the SSC to reprogram the basic data width on-the-fly.
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Port Control

The SSC uses three pins of Port 3 to communicate with the external world. Pin P3.13/SCLK serves
as the clock line, while pins P3.8/MRST (Master Receive / Slave Transmit) and P3.9/MTSR (Master
Transmit / Slave Receive) serve as the serial data input/output lines.

The operation of these pins depends on the selected operating mode (master or slave). In order to
enable the alternate output functions of these pins instead of the general purpose IO operation, the
respective port latches have to be set to ’1’, since the port latch outputs and the alternate output
lines are ANDed. When an alternate data output line is not used (function disabled), it is held at a
high level, allowing IO operations via the port latch. The direction of the port lines depends on the
operating mode. The SSC will automatically use the correct alternate input or output line of the ports
when switching modes. The direction of the pins, however, must be programmed by the user, as
shown in the tables. Using the open drain output feature helps to avoid bus contention problems
and reduces the need for hardwired hand-shaking or slave select lines. In this case it is not always
necessary to switch the direction of a port pin. The table below summarizes the required values for
the different modes and pins.   

Note: In the table above, an ’x’ means that the actual value is irrelevant in the respective mode,
however, it is recommended to set these bits to ’1’, so they are already in the correct state
when switching between master and slave mode.

12.3 Baud Rate Generation   

The serial channel SSC has its own dedicated 16-bit baud rate generator with 16-bit reload
capability, allowing baud rate generation independent from the timers.  

The baud rate generator is clocked with the CPU clock divided by 2 (fCPU/2). The timer is counting
downwards and can be started or stopped through the global enable bit SSCEN in register
SSCCON. Register SSCBR is the dual-function Baud Rate Generator/Reload register. Reading
SSCBR, while the SSC is enabled, returns the content of the timer. Reading SSCBR, while the SSC
is disabled, returns the programmed reload value. In this mode the desired reload value can be
written to SSCBR.

Note: Never write to SSCBR, while the SSC is enabled.

SSC Port Control

Pin Master Mode Slave Mode

Function Port Latch Direction Function Port Latch Direction

SCLK Serial Clock 
Output

P3.13 = ’1’ DP3.13 = ’1’ Serial Clock 
Input

P3.13 = ’x’ DP3.13 = ’0’

MTSR Serial Data 
Output

P3.9 = ’1’ DP3.9 = ’1’ Serial Data 
Input

P3.9 = ’x’ DP3.9 = ’0’

MRST Serial Data 
Input

P3.8 = ’x’ DP3.8 = ’0’ Serial Data 
Output

P3.8 = ’1’ DP3.8 = ’1’
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The formulas below calculate either the resulting baud rate for a given reload value, or the required
reload value for a given baudrate:

   

<SSCBR> represents the content of the reload register, taken as unsigned 16-bit integer.

The maximum baud rate that can be achieved when using a CPU clock of 16 MHz is 4 MBaud. The
table below lists some possible baud rates together with the required reload values and the resulting
bit times, assuming a CPU clock of 16 MHz.

   

Note: The contents of SSCBR must be > 0.

Baud Rate Bit Time Reload Value

Reserved. Use a reload value > 0. --- --- 0000H

4.0 MBaud 250 ns 0001H

2.67 MBaud 375 ns 0002H

2.0 MBaud 500 ns 0003H

1.6 MBaud 625 ns 0004H

1.0 MBaud 1 µs 0007H

100 KBaud 10 µs 004FH

10 KBaud 100 µs 031FH

1.0 KBaud 1 ms 1F3FH

122.1 Baud 8.2 ms FFFFH

BSSC =
fCPU

2 × (<SSCBR> + 1)
SSCBR =  (

fCPU

2 × BaudrateSSC
) - 1
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12.4 Error Detection Mechanisms   

The SSC is able to detect four different error conditions. Receive Error and Phase Error are
detected in all modes, while Transmit Error and Baudrate Error only apply to slave mode. When an
error is detected, the respective error flag is set. When the corresponding Error Enable Bit is set,
also an error interrupt request will be generated by setting SSCEIR (see figure below). The error
interrupt handler may then check the error flags to determine the cause of the error interrupt. The
error flags are not reset automatically (like SSCEIR), but rather must be cleared by software after
servicing. This allows servicing of some error conditions via interrupt, while the others may be polled
by software.

Note: The error interrupt handler must clear the associated (enabled) errorflag(s) to prevent
repeated interrupt requests.

A Receive Error (Master or Slave mode) is detected, when a new data frame is completely
received, but the previous data was not read out of the receive buffer register SSCRB. This
condition sets the error flag SSCRE and, when enabled via SSCREN, the error interrupt request
flag SSCEIR. The old data in the receive buffer SSCRB will be overwritten with the new value and
is unretrievably lost.

A Phase Error (Master or Slave mode) is detected, when the incoming data at pin MRST (master
mode) or MTSR (slave mode), sampled with the same frequency as the CPU clock, changes
between one sample before and two samples after the latching edge of the clock signal (see “Clock
Control”). This condition sets the error flag SSCPE and, when enabled via SSCPEN, the error
interrupt request flag SSCEIR.

A Baud Rate Error (Slave mode) is detected, when the incoming clock signal deviates from the
programmed baud rate by more than 100%, i.e. it either is more than double or less than half the
expected baud rate. This condition sets the error flag SSCBE and, when enabled via SSCBEN, the
error interrupt request flag SSCEIR. Using this error detection capability requires that the slave's
baud rate generator is programmed to the same baud rate as the master device. This feature
detects false additional, or missing pulses on the clock line (within a certain frame).

Note: If this error condition occurs and bit SSCAREN = ’1’, an automatic reset of the SSC will be
performed in case of this error. This is done to reinitialize the SSC, if too few or too many
clock pulses have been detected.
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A Transmit Error (Slave mode) is detected, when a transfer was initiated by the master (shift clock
gets active), but the transmit buffer SSCTB of the slave was not updated since the last transfer. This
condition sets the error flag SSCTE and, when enabled via SSCTEN, the error interrupt request flag
SSCEIR. If a transfer starts while the transmit buffer is not updated, the slave will shift out the ’old’
contents of the shift register, which normally is the data received during the last transfer.
This may lead to the corruption of the data on the transmit/receive line in half-duplex mode (open
drain configuration), if this slave is not selected for transmission. This mode requires that slaves not
selected for transmission only shift out ones, i.e. their transmit buffers must be loaded with ’FFFFH’
prior to any transfer.

Note: A slave with push/pull output drivers, which is not selected for transmission, will normally
have its output drivers switched. However, in order to avoid possible conflicts or
misinterpretations, it is recommended to always load the slave’s transmit buffer prior to any
transfer.

   

Figure 12-6
SSC Error Interrupt Control
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12.5 SSC Interrupt Control

Three bit addressable interrupt control registers are provided for serial channel SSC. Register
SSCTIC controls the transmit interrupt, SSCRIC controls the receive interrupt and SSCEIC controls
the error interrupt of serial channel SSC. Each interrupt source also has its own dedicated interrupt
vector. SCTINT is the transmit interrupt vector, SCRINT is the receive interrupt vector, and SCEINT
is the error interrupt vector.

The cause of an error interrupt request (receive, phase, baudrate, transmit error) can be identified
by the error status flags in control register SSCCON.

Note: In contrary to the error interrupt request flag SSCEIR, the error status flags SSCxE are not
reset automatically upon entry into the error interrupt service routine, but must be cleared by
software.

   

SSCTIC (FF72H / B9H)   SFR Reset Value: - - 00H 

SSCRIC (FF74H / BAH)   SFR Reset Value: - - 00H 

SSCEIC (FF76H / BBH)   SFR Reset Value: - - 00H 

Note: Please refer to the general Interrupt Control Register description for an explanation of the
control fields.

SSC
TIE

SSC
TIR

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

GLVLILVL

SSC
RIE

SSC
RIR

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

GLVLILVL

SSC
EIR

SSC
EIE

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

GLVLILVL
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13 The Watchdog Timer (WDT)   

To allow recovery from software or hardware failure, the C161RI provides a Watchdog Timer. If the
software fails to service this timer before an overflow occurs, an internal reset sequence will be
initiated. This internal reset will also pull the RSTOUT pin low, which also resets the peripheral
hardware which might be the cause for the malfunction. When the watchdog timer is enabled and
the software has been designed to service it regularly before it overflows, the watchdog timer will
supervise the program execution as it only will overflow if the program does not progress properly.
The watchdog timer will also time out if a software error was due to hardware related failures. This
prevents the controller from malfunctioning for longer than a user-specified time.

Note: When the bidirectional reset is enabled also pin RSTIN will be pulled low for the duration of
the internal reset sequence upon a watchdog timer reset.

The watchdog timer provides two registers: a read-only timer register that contains the current
count, and a control register for initialization and reset source detection.

   

Figure 13-1
SFRs and Port Pins associated with the Watchdog Timer

The watchdog timer is a 16-bit up counter which can be clocked with the CPU clock (fCPU) either
divided by 2 or divided by 128. This 16-bit timer is realized as two concatenated 8-bit timers (see
figure below). The upper 8 bits of the watchdog timer can be preset to a user-programmable value
via a watchdog service access in order to vary the watchdog expire time. The lower 8 bits are reset
upon each service access.

     

Figure 13-2
Watchdog Timer Block Diagram
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13.1 Operation of the Watchdog Timer

The current count value of the Watchdog Timer is contained in the Watchdog Timer Register WDT
which is a non-bitaddressable read-only register. The operation of the Watchdog Timer is controlled
by its bitaddressable Watchdog Timer Control Register WDTCON. This register specifies the reload
value for the high byte of the timer, selects the input clock prescaling factor and provides flags that
indicate the source of a reset.

WDTCON (FFAEH / D7H)   SFR   Reset Value: 00XXH  

Note: The reset value depends on the reset source (see description below).
The execution of EINIT clears the reset indication flags.

After any software reset, external hardware reset (see note), or watchdog timer reset, the watchdog
timer is enabled and starts counting up from 0000H with the frequency fCPU/2. The input frequency
may be switched to fCPU/128 by setting bit WDTIN. The watchdog timer can be disabled via the
instruction DISWDT (Disable Watchdog Timer). Instruction DISWDT is a protected 32-bit instruction
which will ONLY be executed during the time between a reset and execution of either the EINIT
(End of Initialization) or the SRVWDT (Service Watchdog Timer) instruction. Either one of these
instructions disables the execution of DISWDT.

Note: After a hardware reset that activates the Bootstrap Loader the watchdog timer will be
disabled.

When the watchdog timer is not disabled via instruction DISWDT it will continue counting up, even
during Idle Mode. If it is not serviced via the instruction SRVWDT by the time the count reaches
FFFFH the watchdog timer will overflow and cause an internal reset. This reset will pull the external
reset indication pin RSTOUT low (and RSTIN in bidirectional reset mode). The Watchdog Timer
Reset Indication Flag (WDTR) in register WDTCON will be set in this case.

Bit Function

WDTIN Watchdog Timer Input Frequency Selection
0: Input frequency is fCPU / 2
1: Input frequency is fCPU / 128

WDTR Watchdog Timer Reset Indication Flag
Cleared by a hardware reset or by the SRVWDT instruction.

SWR Software Reset Indication Flag

SHWR Short Hardware Reset Indication Flag

LHWR Long Hardware Reset Indication Flag

WDTREL Watchdog Timer Reload Value (for the high byte of WDT)

-
SHW

R
WDT

R
SW
R

WDT
IN-

LHW
R-

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- r r rrw - -

WDTREL

r rw
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A watchdog reset will also complete a running external bus cycle before starting the internal reset
sequence if this bus cycle does not use READY or samples READY active (low) after the
programmed waitstates. Otherwise the external bus cycle will be aborted.

To prevent the watchdog timer from overflowing it must be serviced periodically by the user
software. The watchdog timer is serviced with the instruction SRVWDT which is a protected 32-bit
instruction. Servicing the watchdog timer clears the low byte and reloads the high byte of the
watchdog timer register WDT with the preset value from bitfield WDTREL which is the high byte of
register WDTCON. Servicing the watchdog timer will also reset bit WDTR. After being serviced the
watchdog timer continues counting up from the value (<WDTREL> × 28). Instruction SRVWDT has
been encoded in such a way that the chance of unintentionally servicing the watchdog timer (e.g. by
fetching and executing a bit pattern from a wrong location) is minimized. When instruction SRVWDT
does not match the format for protected instructions the Protection Fault Trap will be entered, rather
than the instruction be executed.

The time period for an overflow of the watchdog timer is programmable in two ways:

• the input frequency to the watchdog timer can be selected via bit WDTIN in register WDTCON
to be either fCPU/2 or fCPU/128.

• the reload value WDTREL for the high byte of WDT can be programmed in register WDTCON.

The period PWDT between servicing the watchdog timer and the next overflow can therefore be
determined by the following formula:  

The table below marks the possible ranges for the watchdog time which can be achieved using a
certain CPU clock. Some numbers are rounded to 3 significant digits.

  

Note: For safety reasons, the user is advised to rewrite WDTCON each time before the watchdog
timer is serviced.

Watchdog Time Ranges

Reload Value
in WDTREL

Prescaler for fCPU

2  (WDTIN = ‘0’) 128  (WDTIN = ‘1’)

20 MHz 16 MHz 12 MHz 20 MHz 16 MHz 12 MHz

FFH 25.6 µs 32.0 µs 42.67 µs 1.64 ms 2.05 ms 2.73 ms

7FH 3.3 ms 4.13 ms 5.5 ms 211 ms 264 ms 352 ms

00H 6.55 ms 8.19 ms 10.92 ms 419 ms 524 ms 699 ms

PWDT =
fCPU

2(1 + <WDTIN>×6) × (216 - <WDTREL> × 28)
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13.2 Reset Source Indication   

The reset indication flags in register WDTCON provide information on the source for the last reset.
As the C161RI starts executing from location 00’0000H after any possible reset event the
initialization software may check these flags in order to determine if the recent reset event was
triggered by an external hardware signal (via RSTIN), by software itself or by an overflow of the
watchdog timer. The initialization (and also the further operation) of the microcontroller system can
thus be adapted to the respective circumstances, e.g. a special routine may verify the software
integrity after a watchdog timer reset.

The reset indication flags are not mutually exclusive, i.e. more than one flag may be set after reset
depending on its source. The table below summarizes the possible combinations:

   

*) When the bidirectional reset mode is enabled, the indicated flags are also set in the respective
reset case. The WDTCON reset value will then be different from the table value.

Note: The listed reset values for WDTCON assume the reserved bits as ‘0’.

Long Hardware Reset is indicated when the RSTIN input is still sampled low (active) at the end of
a hardware triggered internal reset sequence.

Short Hardware Reset is indicated when the RSTIN input is sampled high (inactive) at the end of
a hardware triggered internal reset sequence.

Software Reset is indicated after a reset triggered by the execution of instruction SRST.

Watchdog Timer Reset is indicated after a reset triggered by an overflow of the watchdog timer.

Note: When bidirectional reset is enabled the RSTIN pin is pulled low for the duration of the internal
reset sequence upon any sort of reset.
Therefore a long hardware reset (LHWR) will be recognized in any case.

Reset Indication Flag Combinations

Reset Indication Flags

Reset Source LHWR SHWR SWR WDTR

Long Hardware Reset X X X

Short Hardware Reset * X X

Software Reset * * X

Watchdog Timer Reset * * X X
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14 The Real Time Clock   

The Real Time Clock (RTC) module of the C161RI basically is an independent timer chain which is
clocked directly with the oscillator clock and serves for different purposes:

● System clock to determine the current time and date
● Cyclic time based interrupt
● 48-bit timer for long term measurements

   

Figure 14-1
SFRs Associated with the RTC Module

The RTC module consists of a chain of 3 divider blocks, a fixed 8:1 divider, the reloadable 16-bit
timer T14 and the 32-bit RTC timer (accessible via registers RTCH and RTCL). Both timers count
up.

The clock signal for the RTC module is directly derived from the on-chip oscillator frequency (not
from the CPU clock) and fed through a separate clock driver. It is therefore independent from the
selected clock generation mode of the C161RI and is controlled by the clock generation circuitry.

   

Note: The RTC registers are not affected by a reset. After a power on reset, however, they are
undefined.

RTC Register Location within the ESFR Space

Register Name Long/Short Address Reset Value Notes

T14 F0D2H / 69H UUUUH Prescaler timer, generates input clock for 
RTC register and periodic interrupt

T14REL F0D0H / 68H UUUUH Timer reload register

RTCH F0D6H / 6BH UUUUH High word of RTC register

RTCL F0D4H / 6AH UUUUH Low word of RTC register

SYSCON2 Power Management Control Register
T14REL Timer T14 Reload Register
T14 Timer T14 Count Register

T14 E

RTCH Real Time Clock Register, High Word
RTCL Real Time Clock Register, Low Word
ISNC Interrupt Subnode Control Register
XP3IC RTC Interrupt Control Register

Data Registers Counter Registers Interrupt Control

XP3IC ERTCH E

ISNC ET14REL E

RTCL E

Control Registers

SYSCON2 E
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Figure 14-2
RTC Block Diagram

System Clock Operation

A real time system clock can be maintained that keeps on running also during idle mode and power
down mode (optionally) and represents the current time and date. This is possible as the RTC
module is not effected by a reset.
The maximum resolution (minimum stepwidth) for this clock information is determined by timer
T14’s input clock. The maximum usable timespan is achieved when T14REL is loaded with 0000H

and so T14 divides by 216.

Cyclic Interrupt Generation

The RTC module can generate an interrupt request whenever timer T14 overflows and is reloaded.
This interrupt request may e.g. be used to provide a system time tick independent of the CPU
frequency without loading the general purpose timers, or to wake up regularly from idle mode. The
interrupt cycle time can be adjusted via the timer T14 reload register T14REL. Please refer to “RTC
Interrupt Generation” below for more details.

48-bit Timer Operation

The concatenation of the 16-bit reload timer T14 and the 32-bit RTC timer can be regarded as a 48-
bit timer which is clocked with the RTC input frequency divided by the fixed prescaler. The reload
register T14REL should be cleared to get a 48-bit binary timer. However, any other reload value
may be used.
The maximum usable timespan is 248 (≈ 1014) T14 input clocks, which would equal more than
100 years at an oscillator frequency of 20 MHz.

RTCLRTCH

T14

T14REL

8:1
fRTC

Reload

Interrupt
Request
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RTC Register Access

The actual value of the RTC is represented by the 3 registers T14, RTCL and RTCH. As these
registers are concatenated to build the RTC counter chain, internal overflows occur while the RTC
is running. When reading or writing the RTC value make sure to account for such internal overflows
in order to avoid reading/writing corrupted values. When reading/writing e.g. 0000H to RTCH and
then accessing RTCL will produce a corrupted value as RTCL may overflow before it can be
accessed. In this case, however, RTCH would be 0001H. The same precautions must be taken for
T14 and T14REL.

14.1 RTC Interrupt Generation   

The RTC interrupt shares the XPER3 interrupt node with the PLL/OWD interrupt (if available). This
is controlled by the interrupt subnode control register ISNC. The interrupt handler can determine the
source of an interrupt request via the separate interrupt request and enable flags (see figure below)
provided in register ISNC.

Note: If only one source is enabled no additional software check is required, of course.

   

Figure 14-3
RTC Interrupt Logic

If T14 interrupts are to be used both stages, the interrupt node (XP3IE = ’1’) and the RTC subnode
(RTCIE = ’1’) must be enabled.

Please note that the node request bit XP3IR is automatically cleared when the interrupt handler is
vectored to, while the subnode request bit T14IR must be cleared by software.
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Note: 1) Only available if PLL is implemented
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Defining the RTC Time Base

The reload timer T14 determines the input frequency of the RTC timer, i.e. the RTC time base, as
well as the T14 interrupt cycle time. The table below lists the interrupt period range and the T14
reload values (for a time base of 1 s and 1 ms) for several oscillator frequencies:  

Increased RTC Accuracy through Software Correction

The accuracy of the C161RI’s RTC is determined by the oscillator frequency and by the respective
prescaling factor (excluding or including T14). The accuracy limit generated by the prescaler is due
to the quantization of a binary counter (where the average is zero), while the accuracy limit
generated by the oscillator frequency is due to the difference between ideal and real frequency (and
therefore accumulates over time). The total accuracy of the RTC can be further increased via
software for specific applications that demand a high time accuracy.

The key to the improved accuracy is the knowledge of the exact oscillator frequency. The relation
of this frequency to the expected ideal frequency is a measure for the RTC’s deviation. The number
N of cycles after which this deviation causes an error of ± 1 cycle can be easily computed. So the
only action is to correct the count by ± 1 after each series of N cycles.

This correction may be applied to the RTC register as well as to T14.

Also the correction may be done cyclic, e.g. within T14’s interrupt service routine, or by evaluating
a formula when the RTC registers are read (for this the respective “last” RTC value must be
available somewhere).

Note: For the majority of applications, however, the standard accuracy provided by the RTC’s
structure will be more than sufficient.

RTC Interrupt Periods and Reload Values

Oscillator 
Frequency

RTC Interrupt Period Reload Value A Reload Value B

Minimum Maximum T14REL Base T14REL Base

32.768 KHz Aux. 244.14 µs 16.0 s F000H 1.000 s FFFCH 0.977 ms

32 KHz Aux. 250 µs 16.38 s F060H 1.000 s FFFCH 1.000 ms

32 KHz Main 8000 µs 524.29 s FF83H 1.000 s ---- ----

4 MHz Main 64.0 µs 4.19 s C2F7H 1.000 s FFF0H 1.024 ms

5 MHz Main 51.2 µs 3.35 s B3B5H 0.999 s FFECH 1.024 ms

8 MHz Main 32.0 µs 2.10 s 85EEH 1.000 s FFE1H 0.992 ms

10 MHz Main 25.6 µs 1.68 s 676AH 0.999 s FFD9H 0.998 ms

12 MHz Main 21.3 µs 1.40 s 48E5H 1.000 s FFD2H 1.003 ms

16 MHz Main 16.0 µs 1.05 s 0BDCH 1.000 s FFC2H 0.992 ms
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15 The Bootstrap Loader   

The built-in bootstrap loader of the C161RI provides a mechanism to load the startup program,
which is executed after reset, via the serial interface. In this case no external memory or an internal
ROM/OTP/Flash is required for the initialization code starting at location 00’0000H.

The bootstrap loader moves code/data into the internal RAM, but it is also possible to transfer data
via the serial interface into an external RAM using a second level loader routine. ROM memory
(internal or external) is not necessary. However, it may be used to provide lookup tables or may
provide “core-code”, i.e. a set of general purpose subroutines, e.g. for IO operations, number
crunching, system initialization, etc.

   

Figure 15-1
Bootstrap Loader Sequence

The Bootstrap Loader may be used to load the complete application software into ROMless
systems, it may load temporary software into complete systems for testing or calibration, it may also
be used to load a programming routine for Flash devices.

The BSL mechanism may be used for standard system startup as well as only for special occasions
like system maintenance (firmware update) or end-of-line programming or testing.

RSTIN

TxD0

Int.  Boot ROM  BSL-routine
 32 bytes

2)

3)

RxD0

CSP:IP

 user software

4)

6)

P0L.4

1) BSL initialization time, > 2 µs @ fCPU = 20 MHz.
2) Zero byte (1 start bit, eight ‘0’ data bits, 1 stop bit), sent by host.
3) Identification byte, sent by C161RI.
4) 32 bytes of code / data, sent by host.
5) Caution: TxD0 is only driven a certain time after reception of the zero byte (2.5 µs @ fCPU = 20 MHz).
6) Internal Boot ROM.

1)

5)
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Entering the Bootstrap Loader

The C161RI enters BSL mode if pin P0L.4 is sampled low at the end of a hardware reset. In this
case the built-in bootstrap loader is activated independent of the selected bus mode. The bootstrap
loader code is stored in a special Boot-ROM, no part of the standard mask ROM, OTP or Flash
memory area is required for this.

After entering BSL mode and the respective initialization the C161RI scans the RXD0 line to receive
a zero byte, i.e. one start bit, eight ‘0’ data bits and one stop bit. From the duration of this zero byte
it calculates the corresponding baudrate factor with respect to the current CPU clock, initializes the
serial interface ASC0 accordingly and switches pin TxD0 to output. Using this baudrate, an
identification byte is returned to the host that provides the loaded data.

This identification byte identifies the device to be bootet. The following codes are defined:

55H: 8xC166.
A5H: Previous versions of the C167 (obsolete).
B5H: C165.
C5H: C167 derivatives.
D5H: All devices equipped with identification registers.

Note: The identification byte D5H does not directly identify a specific derivative. This information
can in this case be obtained from the identification registers.

When the C161RI has entered BSL mode, the following configuration is automatically set (values
that deviate from the normal reset values, are marked):

Watchdog Timer: Disabled Register STKUN: FA40H 
Context Pointer CP: FA00H Register STKOV: FA0CH 0<->C
Stack Pointer SP: FA40H Register BUSCON0: acc. to startup config.
Register S0CON: 8011H P3.10 / TXD0: ‘1’
Register S0BG: acc. to ‘00’ byte DP3.10: ‘1’

Other than after a normal reset the watchdog timer is disabled, so the bootstrap loading sequence
is not time limited. Pin TXD0 is configured as output, so the C161RI can return the identification
byte.

Note: Even if the internal ROM/OTP/Flash is enabled, no code can be executed out of it.

The hardware that activates the BSL during reset may be a simple pull-down resistor on P0L.4 for
systems that use this feature upon every hardware reset. You may want to use a switchable solution
(via jumper or an external signal) for systems that only temporarily use the bootstrap loader.
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Figure 15-2
Hardware Provisions to Activate the BSL

After sending the identification byte the ASC0 receiver is enabled and is ready to receive the initial
32 bytes from the host. A half duplex connection is therefore sufficient to feed the BSL.

Note: In order to properly enter BSL mode it is not only required to pull P0L.4 low,
but also pins P0L.2, P0L.3, P0L.5 must receive defined levels.
This is described in chapter “System Reset”.
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Memory Configuration after Reset

The configuration (i.e. the accessibility) of the C161RI’s memory areas after reset in Bootstrap-
Loader mode differs from the standard case. Pin EA is not evaluated when BSL mode is selected,
and accesses to the internal code memory are partly redirected, while the C161RI is in BSL mode
(see table below). All code fetches are made from the special Boot-ROM, while data accesses read
from the internal code memory. Data accesses will return undefined values on ROMless devices.

Note: The code in the Boot-ROM is not an invariant feature of the C161RI. User software should
not try to execute code from the internal ROM area while the BSL mode is still active, as
these fetches will be redirected to the Boot-ROM.
The Boot-ROM will also “move” to segment 1, when the internal ROM area is mapped to
segment 1.

   

 16 MBytes  16 MBytes  16 MBytes

BSL mode active Yes (P0L.4 = ’0’) Yes (P0L.4 = ’0’) No (P0L.4 = ’1’)

EA pin high low acc. to application

Code fetch from 
internal ROM area

Boot-ROM access Boot-ROM access User ROM access

Data fetch from 
internal ROM area

User ROM access User ROM access User ROM access
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Loading the Startup Code

After sending the identification byte the BSL enters a loop to receive 32 bytes via ASC0. These
bytes are stored sequentially into locations 00’FA40H through 00’FA5FH of the internal RAM. So up
to 16 instructions may be placed into the RAM area. To execute the loaded code the BSL then
jumps to location 00’FA40H, i.e. the first loaded instruction. The bootstrap loading sequence is now
terminated, the C161RI remains in BSL mode, however. Most probably the initially loaded routine
will load additional code or data, as an average application is likely to require substantially more
than 16 instructions. This second receive loop may directly use the pre-initialized interface ASC0 to
receive data and store it to arbitrary user-defined locations.

This second level of loaded code may be the final application code. It may also be another, more
sophisticated, loader routine that adds a transmission protocol to enhance the integrity of the loaded
code or data. It may also contain a code sequence to change the system configuration and enable
the bus interface to store the received data into external memory.

This process may go through several iterations or may directly execute the final application. In all
cases the C161RI will still run in BSL mode, i.e. with the watchdog timer disabled and limited access
to the internal code memory. All code fetches from the internal ROM area (00’0000H … 00’7FFFH

or 01’0000H … 01’7FFFH, if mapped to segment 1) are redirected to the special Boot-ROM. Data
fetches access will access the internal code memory of the C161RI, if any is available, but will return
undefined data on ROMless devices.

Exiting Bootstrap Loader Mode

In order to execute a program in normal mode, the BSL mode must be terminated first. The C161RI
exits BSL mode upon a software reset (ignores the level on P0L.4) or a hardware reset (P0L.4 must
be high then!). After a reset the C161RI will start executing from location 00’0000H of the internal
ROM or the external memory, as programmed via pin EA.

Choosing the Baudrate for the BSL  

The calculation of the serial baudrate for ASC0 from the length of the first zero byte that is received,
allows the operation of the bootstrap loader of the C161RI with a wide range of baudrates. However,
the upper and lower limits have to be kept, in order to insure proper data transfer.  

The C161RI uses timer T6 to measure the length of the initial zero byte. The quantization
uncertainty of this measurement implies the first deviation from the real baudrate, the next deviation
is implied by the computation of the S0BRL reload value from the timer contents. The formula below
shows the association:   

fCPU

32 S0BRL 1+( )⋅-------------------------------------------BC161RI =

S0BRL
T6 36–

72-------------------= T6
9
4--

fCPU

BHost
------------⋅=,
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For a correct data transfer from the host to the C161RI the maximum deviation between the internal
initialized baudrate for ASC0 and the real baudrate of the host should be below 2.5%. The deviation
(FB, in percent) between host baudrate and C161RI baudrate can be calculated via the formula
below:  

Note: Function (FB) does not consider the tolerances of oscillators and other devices supporting
the serial communication.

This baudrate deviation is a nonlinear function depending on the CPU clock and the baudrate of the
host. The maxima of the function (FB) increase with the host baudrate due to the smaller baudrate
prescaler factors and the implied higher quantization error (see figure below).

   

Figure 15-3
Baudrate deviation between host and C161RI

The minimum baudrate (BLow in the figure above) is determined by the maximum count capacity
of timer T6, when measuring the zero byte, i.e. it depends on the CPU clock. Using the maximum
T6 count 216 in the formula the minimum baudrate for fCPU = 16 MHz is 549 Baud. The lowest
standard baudrate in this case would be 600 Baud. Baudrates below BLow would cause T6 to
overflow. In this case ASC0 cannot be initialized properly.

The maximum baudrate (BHigh in the figure above) is the highest baudrate where the deviation still
does not exceed the limit, i.e. all baudrates between BLow and BHigh are below the deviation limit. The
maximum standard baudrate that fulfills this requirement is 19200 Baud.

Higher baudrates, however, may be used as long as the actual deviation does not exceed the limit.
A certain baudrate (marked I) in the figure) may e.g. violate the deviation limit, while an even higher
baudrate (marked II) in the figure) stays very well below it. This depends on the host interface.

FB
BContr BHost–

BContr
--------------------------------- 100⋅= % FB 2,5≤ %,
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16 The Analog / Digital Converter   

The C161RI provides an Analog / Digital Converter with 8-bit resolution and a sample & hold circuit
on-chip. A multiplexer selects between up to 4 analog input channels (alternate functions of Port 5).

The ADC supports the following conversion modes:

• Fixed Channel Single Conversion
produces just one result from the selected channel

• Fixed Channel Continuous Conversion
repeatedly converts the selected channel

A set of SFRs and port pins provide access to control functions and results of the ADC.

   

Figure 16-1
SFRs and Port Pins associated with the A/D Converter

ADCIC A/D Converter Interrupt Control Register
(End of Conversion)

ADEIC A/D Converter Interrupt Control Register
(Overrun Error)

ADCON

Ports & Direction Control
Alternate Functions

Data Registers Control Registers Interrupt Control

ADDAT ADCIC

ADEIC

P5

P5 Port 5 Analog Input Port: AN0/P5.0…AN3/P5.3
P5DIDIS Port 5 Digital Input Disable Register
ADDAT A/D Converter Result Register
ADCON A/D Converter Control Register

P5DIDIS
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The external analog reference voltages VAREF and VAGND are fixed. The separate supply for the ADC
reduces the interference with other digital signals.

The conversion time is programmable, so the ADC can be adjusted to the internal resistances of the
analog sources and/or the analog reference voltage supply.

   

Figure 16-2
Analog / Digital Converter Block Diagram

Interrupt 
Requests

Conversion
Control

ADCON

8-Bit
Converter

S+H

ADCIR

MUX

ADEIR

AN3
P5.3

:
:

AN0
P5.0

Result Reg. ADDAT

VAGNDVAREF
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16.1 Mode Selection and Operation

The analog input channels AN0 … AN3 are alternate functions of Port 5 which is an input-only port.
The Port 5 lines may either be used as analog or digital inputs. For pins that shall be used as analog
inputs it is recommended to disable the digital input stage via register P5DIDIS. This avoids
undesired cross currents and switching noise while the (analog) input signal level is between VIL

and VIH.

The functions of the A/D converter are controlled by the bit-addressable A/D Converter Control
Register ADCON. Its bitfields specify the analog channel to be acted upon, the conversion mode,
and also reflect the status of the converter.  

ADCON (FFA0H / D0H)    SFR Reset Value: 0000H   

Bit field ADCH specifies the analog input channel which is to be converted. Bitfield ADM selects the
operating mode of the A/D converter. A conversion (or a sequence) is then started by setting bit
ADST. Clearing ADST stops the A/D converter after a certain operation which depends on the
selected operating mode.

The busy flag (read-only) ADBSY is set, as long as a conversion is in progress.

Bit Function

ADCH ADC Analog Channel Input Selection
Selects the ADC channel which is to be converted.

ADM ADC Mode Selection
0: Fixed Channel Single Conversion
1: Fixed Channel Continuous Conversion

ADRP ADC Result Position
0: 8-bit result is written to ADDAT.2 … ADDAT.9
1: 8-bit result is written to ADDAT.0 … ADDAT.7

ADST ADC Start Bit
0: Stop a running conversion
1: Start conversion(s)

ADBSY ADC Busy Flag
0: ADC is idle
1: A conversion is active.

ADCTC ADC Conversion Time Control (Defines the ADC basic conversion clock fBC)
00: fBC = fCPU / 2
01: fBC = fCPU / 4
10: fBC = fCPU / 8
11: fBC = fCPU / 16

ADM- ---

5 4 3 2 1 011 10 9 8 7 615 14 13 12

-rw

--ADCTC

- -

- ADCH

rw-

AD
BSY

r rw rw

AD
RP

AD
ST

rw

-

- - --
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The result of a conversion is stored in the result register ADDAT.

ADDAT (FEA0H / 50H)   SFR Reset Value: 0000H 

A conversion is started by setting bit ADST = ‘1’. The busy flag ADBSY will be set and the converter
then selects and samples the input channel, which is specified by the channel selection field ADCH
in register ADCON. The sampled level will then be held internally during the conversion. When the
conversion of this channel is complete, the 8-bit result is transferred into the result register ADDAT
and the interrupt request flag ADCIR is set. The conversion result is placed into bitfield ADRES of
register ADDAT left- or right-adjusted, depending on bit ADRP in register ADCON.

If bit ADST is reset via software, while a conversion is in progress, the A/D converter will stop after
the current conversion.

Setting bit ADST while a conversion is running, will abort this conversion and start a new conversion
with the parameters specified in ADCON.

Note: Abortion and restart (see above) are triggered by bit ADST changing from ‘0’ to ‘1’, i.e. ADST
must be ‘0’ before being set.

While a conversion is in progress, the mode selection field ADM and the channel selection field
ADCH may be changed. These bitfields will be evaluated after the current conversion.

Fixed Channel Conversion Modes

These modes are selected by programming the mode selection bitfield ADM in register ADCON to
‘0B’ (single conversion) or to ‘1B’ (continuous conversion). After starting the converter through bit
ADST the busy flag ADBSY will be set and the channel specified in bit field ADCH will be converted.
After the conversion is complete, the interrupt request flag ADCIR will be set.

In Single Conversion Mode the converter will automatically stop and reset bits ADBSY and ADST.

In Continuous Conversion Mode the converter will automatically start a new conversion of the
channel specified in ADCH. ADCIR will be set after each completed conversion.

When bit ADST is reset by software, while a conversion is in progress, the converter will complete
the current conversion and then stop and reset bit ADBSY.

Bit Function

ADRES A/D Conversion Result
The 8-bit result is stored right- or left-adjusted according to bit ADRP.
ADRP = ’0’: Result in ADRES.9-2 (left-adjusted, ADRES.1-0 = ’00’)
ADRP = ’1’: Result in ADRES.7-0 (right-adjusted, ADRES.9-8 = ’00’)

-

5 4 3 2 1 011 10 9 8 7 615 14 13 12

--

-- --

-- - rw

ADRES

-

-
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16.2 Conversion Timing Control   

When a conversion is started, first the capacitances of the converter are loaded via the respective
analog input pin to the current analog input voltage. The time to load the capacitances is referred to
as sample time. Next the sampled voltage is converted to a digital value in successive steps, which
correspond to the resolution of the ADC. During these phases (except for the sample time) the
internal capacitances are repeatedly charged and discharged via pins VAREF and VAGND.

The current that has to be drawn from the sources for sampling and changing charges depends on
the time that each respective step takes, because the capacitors must reach their final voltage level
within the given time, at least with a certain approximation. The maximum current, however, that a
source can deliver, depends on its internal resistance.

The time that the two different actions during conversion take (sampling, and converting) can be
programmed within a certain range in the C161RI relative to the CPU clock. The absolute time that
is consumed by the different conversion steps therefore is independent from the general speed of
the controller. This allows adjusting the A/D converter of the C161RI to the properties of the system:

Fast Conversion can be achieved by programming the respective times to their absolute possible
minimum. This is preferable for scanning high frequency signals. The internal resistance of analog
source and analog supply must be sufficiently low, however.

High Internal Resistance can be achieved by programming the respective times to a higher value,
or the possible maximum. This is preferable when using analog sources and supply with a high
internal resistance in order to keep the current as low as possible. The conversion rate in this case
may be considerably lower, however.

The conversion time is programmed via the upper two bits of register ADCON. Bitfield ADCTC
(conversion time control) selects the basic conversion clock, used for the operation of the A/D
converter. The sample time is derived from this conversion clock. The table below lists the possible
combinations. The timings refer to CPU clock cycles, where tCPU = 1 / fCPU.

The limit values for fBC (see data sheet) must not be exceeded when selecting ADCTC and fCPU.     

The time for a complete conversion includes the sample time (6 tBC), the conversion itself and the
time required to transfer the digital value to the result register (2 tCPU) as shown in the example
below.

ADCON.15|14
(ADCTC)

A/D Converter Basic Clock
fBC  

Sample Time tS Conversion Time tC

00 fCPU / 2 tCPU × 12 tCPU × 62

01 fCPU / 4 tCPU × 24 tCPU × 122

10 fCPU / 8 tCPU × 48 tCPU × 242

11 fCPU / 16 tCPU × 96 tCPU × 482
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Converter Timing Example

Assumptions: fCPU = 16 MHz (i.e. tCPU = 62.5 ns), ADCTC = ’01’.

Basic clock fBC = fCPU / 4 = 4 MHz, i.e. tBC = 250 ns.
Sample time tS = tBC × 6 = 1500 ns.
Conversion time tC = 30 tBC + 2 tCPU = (7500 + 125) ns = 7.625 µs.

Note: For the exact specification please refer to the data sheet of the selected derivative.

16.3 A/D Converter Interrupt Control

At the end of each conversion, interrupt request flag ADCIR in interrupt control register ADCIC is
set. This end-of-conversion interrupt request may cause an interrupt to vector ADCINT, or it may
trigger a PEC data transfer which reads the conversion result from register ADDAT e.g. to store it
into a table in the internal RAM for later evaluation.

The interrupt request flag ADEIR in register ADEIC will be set if a conversion result overwrites a
previous value in register ADDAT (error interrupt in standard mode). This interrupt request may be
used to cause an interrupt to vector ADEINT.

ADCIC (FF98H / CCH)   SFR Reset Value: - - 00H  

ADEIC (FF9AH / CDH)   SFR Reset Value: - - 00H 

Note: Please refer to the general Interrupt Control Register description for an explanation of the
control fields.

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

GLVLILVL
ADC

IE
ADC

IR

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

GLVLILVL
ADE

IE
ADE
IR
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17 The I2C-Bus Module   

The on-chip I2C-bus module (Inter Integrated Circuit) connects the C161RI to other external
controllers and/or peripherals via the two-line serial I2C interface. The I2C-Bus module provides
communication at data rates of up to 400 Kbit/s in master and/or slave mode and features 7-bit
addressing as well as 10-bit addressing.

Note: The I2C-Bus module is an XBUS peripheral and therefore requires bit XPEN in register
SYSCON to be set in order to be operable.

   

Figure 17-1
SFRs Associated with the I2C-Bus Module

The module can operate in three different modes:

● Master mode, where the C161RI controls the bus transactions and provides the clock signal.
● Slave mode, where an external master controls the bus transactions and provides the clock

signal.
● Multimaster mode, where several masters can be connected to the bus, i.e. the C161RI can be

master or slave.

The on-chip I2C-bus module allows efficient communication over the common I2C bus. The module
unloads the CPU of the C161RI of low level tasks like

● (De)Serialization of bus data
● Generation of start and stop conditions
● Monitoring the bus lines in slave mode
● Evaluation of the device address in slave mode
● Bus access arbitration in multimaster mode

SYSCON System Configuration Register
ICCFG I2C Configuration Register
ICCON I2C Control Register
ICST I2C Status Register

ICRTB X

ICRTB I2C Receive Transmit Buffer
ICADR I2C Address Register
XP0IC I2C Data Interrupt Control Register
XP1IC I2C Protocol Interrupt Control Register

Control Registers Data Registers Interrupt Control

XP1IC EICADR X

XP0IC EICCFG X

Core Registers

SYSCON

ICCON X

ICST X
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17.1 I2C-Bus Conditions

Data is transferred over the 2-line I2C bus (SDA, SCL) using a protocol that ensures reliable and
efficient transfers. This protocol clearly distinguishes regular data transfers from defined control
signals which control the data transfers.

The following bus conditions are defined:

Bus Idle: SDA and SCL remain high. The I2C bus is currently not used.

Data Valid: SDA stable during the high phase of SCL. SDA then represents the transferred
bit. There is one clock pulse for each transferred bit of data.
During data transfers SDA may only change while SCL is low (see below)!

Start Transfer: A falling edge on SDA ( ) while SCL is high indicates a start condition.
This start condition initiates a data transfer over the I2C bus.

Stop Transfer: A rising edge on SDA ( ) while SCL is high indicates a stop condition.
This stop condition terminates a data transfer. Between a start condition
and a stop condition an arbitrary number of bytes may be transferred.

The figure below gives examples for these bus conditions.
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Figure 17-2
I2C-Bus Conditions

MCD03901

Internal Clock, n = 5:

Start Condition:

SDA

SCL

Data/Acknowledge Bit:

SDA

SCL

Repeated Start:

SDA

SCL

Stop Condition:

SDA

SCL

T0 T1 T2 T3

The high level of the signal is verified.
If the signal is low, the previous state (Ti) is repeated.
The length of each state is 1 ... 256 CPU clock cycles, as defined by bitfield BRP
in register ICCFG (in the above axample n = 5, ie. BRP = 04  )H
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17.2 The Physical I2C-Bus Interface   

Communication via the I2C Bus uses two bidirectional lines, the serial data line SDA and the serial
clock line SCL. These two generic interface lines can each be connected to a number of IO port
lines of the C161RI (see figure below). These connections can be established and released under
software control.

   

Figure 17-3
I2C-Bus Line Connections

This mechanism allows a number of configurations of the physical I2C-bus interface:

Channel switching: The I2C module can be connected to a specific pair of pins (e.g. SDA0 and
SCL0) which then forms a separate I2C channel to the external system. The channel can be
dynamically switched by connecting the module to another pair of pins (e.g. SDA1 and SCL1). This
establishes physically separate interface channels.

Broadcasting: Connecting the module to more than one pair of pins (e.g. SDA0/1 and SCL0/1)
allows the transmission of messages over multiple physical channels at the same time. Please note
that this configuration is critical when the C161RI is a slave or receives data.

Note: Never change the physical bus interface configuration while a transfer is in progress.

I2C
Module

SDA0

SCL0

SCLx

SDAx

Generic data line

Generic clock line
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Figure 17-4
Physical Bus Configuration Example

Output Pin Configuration

The pin drivers that are assigned to the I2C channel(s) provide open drain outputs (i.e. no upper
transistor). This ensures that the I2C module does not put any load on the I2C-bus lines while the
C161RI is not powered. The I2C-bus lines therefore require external pullup resistors (approx. 10 KΩ
for operation at 100 KBaud, 2 KΩ for operation at 400 KBaud).

Note: If the pins that are assigned to the I2C channel(s) are to be used as general purpose IO they
must be used for open drain outputs or as inputs.

All pins of the C161RI that are to be used for I2C-bus communication must be switched to output and
their alternate function must be enabled (by setting the respective port output latch to ‘1’), before
any communication can be established.

If not driven by the I2C module (i.e. the corresponding enable bit in register ICCFG is ‘0’) they then
switch off their drivers (i.e. driving ‘1’ to an open drain output). Due to the external pullup devices the
respective bus levels will then be ‘1’ which is idle.

The I2C module features digital input filters in order to improve the rejection of noise from the
external bus lines.

SCL

SDA
I2C Bus A

I2C Bus Node
eg. C161RI

SCL

SDA
I2C Bus B

I2C Bus Node
eg. C161RI

I2C Bus Node
eg. C161RI
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17.3 Operating the I2C Bus

The on-chip I2C-bus module of the C161RI can be operated in variety of operating modes.

Master or Slave operation can be selected, so theI2C module can control the external bus (master)
or can be controlled via the bus (slave) by a remote master.

7-bit or 10-bit addressing can be selected, so the I2C module can communicate with standard 7-bit
devices as well as with more sophisticated 10-bit devices.

100 KBd or 400 KBd transfer speed can be selected, so the I2C module can communicate with
slow devices conforming to the standard I2C-bus specification as well as with fast devices
conforming to the extended specification.

Physical channels can be selected, so the I2C module can use electrically separated channels or
increase the addressing range by using more data lines.

Note: Baudrate and physical channels should never be changed (via ICCFG) during a transfer.

Operation in Master Mode   

If the on-chip I2C module shall control the I2C bus (i.e. be bus master) master mode must be
selected via bitfield MOD in register ICCON. The physical channel is configured by a control word
written to register ICCFG, defining the active interface pins and the used baudrate. More than one
SDA and/or SCL line may be active at a time. The address of the remote slave that is to be accessed
is written to ICRTB. The bus is claimed by setting bit BUM in register ICCON. This generates a start
condition on the bus and automatically starts the transmission of the address in ICRTB. Bit TRX in
register ICCON defines the transfer direction (TRX = ’1’, i.e. transmit, for the slave address). A
repeated start condition is generated by setting bit RSC in register ICCON, which automatically
starts the transmission of the address previously written to ICRTB. This may be used to change the
transfer direction. RSC is cleared automatically after the repeated start condition has been
generated.

The bus is released by clearing bit BUM in register ICCON. This generates a stop condition on the
bus.

Operation in Multimaster Mode   

If multimaster mode is selected via bitfield MOD in register ICCON the on-chip I2C module can
operate concurrently as a bus master or as a slave. The descriptions of these modes apply
accordingly.

Multimaster mode implies that several masters are connected to the same bus. As more than one
master may try to claim the bus at a given time an arbitration is done on the SDA line. When a
master device detects a mismatch between the data bit to be sent and the actual level on the SDA
(bus) line it looses the arbitration and automatically switches to slave mode (leaving the other
device as the remaining master). This loss of arbitration is indicated by bit AL in register ICST which
must be checked by the driver software when operating in multimaster mode. Lost arbitration is also
indicated when the software tries to claim the bus (by setting bit BUM) while the I2C module is
operating in slave mode (indicated by bit BB = ’1’).

Bit AL must be cleared via software.
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Operation in Slave Mode   

If the on-chip I2C module shall be controlled via the I2C bus by a remote master (i.e. be a bus slave)
slave mode must be selected via bitfield MOD in register ICCON. The physical channel is
configured by a control word written to register ICCFG, defining the active interface pins and the
used baudrate. It is recommended to have only one SDA and SCL line active at a time when
operating in slave mode. The address by which the slave module can be selected is written to
register ICADR.

The I2C module is selected by another master when it receives (after a start condition) either its own
device address (stored in ICADR) or the general call address (00H). In this case an interrupt is
generated and bit SLA in register ICST is set indicating the valid selection. The desired transfer
mode is then selected via bit TRX (TRX = ’0’ for reception, TRX = ’1’ for transmission).

For a transmission the respective data byte is placed into the buffer ICRTB (which automatically
sets bit TRX) and the acknowledge behavior is selected via bit ACKDIS.

For a reception the respective data byte is fetched from the buffer ICRTB after IRQD has been
activated.

In both cases the data transfer itself is enabled by clearing bit IRQP which releases the SCL line.

When a stop condition is detected bit SLA is cleared.
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The I2C-bus configuration register ICCFG selects the bus baudrate as well as the activation of SDA
and SCL lines. So an external I2C channel can be established (baudrate and physical lines) with one
single register access.

Systems that utilize several I2C channels can prepare a set of control words which configure the
respective channels. By writing one of these control words to ICCFG the respective channel is
selected. Different channels may use different baudrates. Also different operating modes can be
selected, e.g. enabling all physical interfaces for a broadcast transmission.

Note: See also section “The Physical I2C-Bus Interface“.

ICCFG (ED00H)   XReg   Reset Value: XX00H  

   

Bit Function

SDASELx SDA Pin Selection
These bits determine to which pins the I2C data line is connected.
0: SDA pin x is disconnected.
1: SDA pin x is connected with I2C data line.

SCLSELx SCL Pin Selection
These bits determine to which pins the I2C clock line is connected.
0: SCL pin x is disconnected.
1: SCL pin x is connected with I2C clock line.

BRP Baudrate Prescaler
Determines the baudrate for the active I2C channel(s).
The resulting baudrate is BI2C = fCPU / (4 × (BRP + 1)). See table below.

I2C-Bus Baudrate Selection   

CPU Frequency fCPU Reload Value for BRP

100 KBd 400 KBd

20 MHz 31H 0BH or 0CH

16 MHz 27H 09H

12 MHz 1DH 06H or 07H

10 MHz 18H 05H

1 MHz 01H or 02H Not possible.

-

-

SDA
SEL2

rw

SDA
SEL1

rw

SDA
SEL0

rw

SCL
SEL0

rw

SCL
SEL1

rw

-

-

-

-

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw

BRP
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ICCON (ED02H)   XReg Reset Value: 0000H  

Bit Function

M10 Address Mode
0: 7-bit addressing using ICA.7-1.
1: 10-bit addressing using ICA.9-0.

RSC Repeated Start Condition
0: No operation. RSC is cleared automatically after the repeated

start condition has been sent.
1: Generate a repeated start condition in (multi)master mode.
RSC cannot be set in slave mode.

MOD Basic Operating Mode
00: I2C module is disabled and initialized.
01: Slave mode.
10: Master mode.
11: Multi-Master mode.

BUM Busy Master
0: Clearing bit BUM ( ) generates a stop condition.
1: Setting bit BUM generates a start condition in (multi)master mode.
Note: Setting BUM ( ) while BB = ’1’ generates an arbitration lost situation.

In this case BUM is cleared and bit AL is set.
BUM cannot be set in slave mode.

ACKDIS Acknowledge Pulse Disable
0: An acknowledge pulse is generated for each received frame.
1: No acknowledge pulse is generated.

AIRDIS Auto Interrupt Reset Disable
0: IRQD is cleared automatically upon a read/write access to ICRTB.

(Advantageous if data are read/written via PEC transfers)
1: IRQD must explicitly be cleared via software.

(Allows to trigger a stop condition after the last data transfer before the bus
is released by clearing IRQD.)

TRX Transmit Select
0: Data is received from the I2C bus.
1: Data is transmitted to the I2C bus.
Note: TRX is set automatically when writing to the transmit buffer ICRTB.

-

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- --

-- -- -

-- -

- M10

rw-

-

-

BUM

rw rw

MODAIR
DIS

ACK
DISTRX

rwrw rw

RSC

rw
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ICST (ED04H)   XReg   Reset Value: 000XH  

1) While either IRQD or IRQP is set and the I2C module is in master mode or has been selected as
a slave, the I2C clock line is held low which prevents further transfers on the I2C bus.
The clock line (i.e. the I2C bus) is released when both IRQD and IRQP are cleared. Only in this case
the next I2C-bus action can take place.
Note that IRQD is cleared automatically upon a read or write access to register ICRTB if bit AIRDIS
is not set.
Both interrupt request bits may be set or cleared via software, e.g. to control the I2C bus.

Bit Function

ADR Address
Bit ADR is set after a start condition in slave mode until the address has been 
received (1 byte in 7-bit address mode, 2 bytes in 10-bit address mode).

AL Arbitration Lost
Bit AL is set when the I2C module has tried to become master on the bus but has 
lost the arbitration. Operation is continued until the 9th clock pulse. Bit IRQP is set 
along with bit AL. Bit AL must be cleared via software.

SLA Slave
0: The I2C bus is not busy, or the module is in master mode.
1: The I2C module has been selected as a slave (device address received).

LRB Last Received Bit (undefined after reset)
Bit LRB represents the last bit (ie. the acknowledge bit) of the last transmitted or 
received frame.

BB Bus Busy
0: The I2C bus is idle, ie. a stop condition has occurred.
1: The I2C bus is active, ie. a start condition has occurred.
Note:Bit BB is always ’0’ while the I2C module is disabled.

IRQD I2C Interrupt Request Bit for Data Transfer Events 1)

0: No interrupt request pending.
1: A data transfer event interrupt request is pending.
IRQD is set after the acknowledge bit of a byte has been received or transmitted, 
and is cleared automatically upon a read or write access to the buffer ICRTB if bit 
AIRDIS = ’0’. IRQD must be cleared via software if bit AIRDIS = ’1’.

IRQP I2C Interrupt Request Bit for Protocol Events 1)

0: No interrupt request pending.
1: A protocol event interrupt request is pending.
IRQP is set when bit SLA or bit AL is set ( ), and must be cleared via software.

-

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- --

-- -- -

-- -

- ADR

r-

-

-

BB

- r

LRBIRQP IRQD-

rwrw r

SLA

r

AL

rw
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The I2C address register ICADR stores the device address (ICA) which identifies the I2C node when
operating in slave mode. Bit M10 in register ICCON determines which part of ICADR is valid and
used.

ICADR (ED06H)   XReg   Reset Value: 0XXXH  

The I2C Receive/Transmit Buffer (ICRTB) accepts bytes to be transmitted and provides received
bytes.

ICRTB (ED08H)    XReg   Reset Value: - - XXH 

Note: It is recommended not to access the receive/transmit buffer while a data transfer is in
progress.

Bit Function

ICA.7-1 Address in 7-bit mode (ICA.9, ICA.8, ICA.0 disregarded).

ICA.0-9 Address in 10-bit mode (all bits used).

Bit Function

ICData Transmit and shift data
This field accepts the byte to be transmitted or provides the received byte.
Note:A data transfer event interrupt request (IRQD) is cleared automatically

when reading from or writing to ICRTB, if bit AIRDIS = ’0’.
If AIRDIS = ’1’ the request flag IRQD must be cleared via software.

-

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- -- rw

- ICA.7 … 1- -- -

-- -

ICA.9 … 8 ICA.0

rwrw

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw- - - -- - - -

-reserved- ICData
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17.4 I2C Interrupt Control

The bit addressable interrupt control registers XP0IC and XP1IC are assigned to the I2C module.
The occurrence of an interrupt request sets the respective interrupt request bit XP0IR/XP1IR. If this
interrupt node is enabled (XPxEN = ’1’) a CPU interrupt is generated and arbitrated. These interrupt
requests may be serviced via a standard service routine or with PEC transfers (see below). If polling
of bits XP0IR and XP1IR is used please note that these request bits must be cleared via software.

Data transfer event interrupts are indicated by bit IRQD and allocated to vector XP0INT.
A data transfer event occurs after the acknowledge bit for a byte has been received or transmitted.

Protocol transfer event interrupts are indicated by bit IRQP and allocated to vector XP1INT.
A protocol transfer event occurs when bit SLA is set, i.e. a slave address is received, or when bit AL
is set, i.e. the bus arbitration has been lost.

As long as either interrupt request flag (IRQD or IRQP) of the I2C-bus module is set the selected
clock line(s) SCLx is/are held low. This disables any further transfer on the I2C bus and enables the
driver software to react on the recent event. When both request bits are cleared the clock line(s)
is/are released again and subsequent bus transfers can take place.

Note: The interrupt node request bits XP0IR and XP1IR are cleared automatically when the CPU
services the respective interrupt (not in case of polling!).
The I2C-bus module interrupt request bit IRQP must be cleared via the driver software.
The I2C-bus module interrupt request bit IRQD is cleared automatically upon a read/write
access to buffer ICRTB if bit AIRDIS = ’0’, otherwise it must be cleared via the driver
software.

XP0IC (F186H / C3H)   ESFR   Reset Value: - - 00H 

XP1IC (F18EH / C7H)   ESFR   Reset Value: - - 00H 

Note: Please refer to the general Interrupt Control Register description for an explanation of the
control fields.

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

XP0IEXP0IR GLVLILVL

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

XP1IEXP1IR GLVLILVL
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17.5 Programming Example

The sample program below illustrates an I2C communication between the C161RI and an NVRAM
(such as SDA2526 or SLA24C04). It uses 7-bit addressing with a slave address of 50H which is
concatenated with the Read/Write bit. This program does not use interrupts, but polls the
corresponding I2C interrupt request flags.

The master (C161RI) starts in master transmitter mode and first sends the slave address
(A0H = 50H//0B) followed by the subaddress (00H). The C161RI changes to master receiver mode,
repeats the slave address (A1H = 50H//1B) and then receives two bytes. The first byte is
acknowledged (ACK = ’0’) by the master, the second byte is not acknowledged (ACK = ’1’). The
transfer is finished with a STOP condition by the master.

The following figure shows the waveforms for the described transfer. A programming example in “C”
illustrates how the operation could be realized.

   

Figure 17-5
I2C-Bus Programming Example Waveforms

Legend:

SDA: Data line
SCL: Clock line

ST: Start
condition

SP: Stop
condition

RS: Repeated 
Start cond.

ACK: Acknow-
ledge

NACK: No acknow.
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/*---------------------------------------------------------------*\
| Programming example to read 2 bytes from an NVRAM               |
| via the I2C bus.                                                |
\*---------------------------------------------------------------*/

void main() {

// X-peripheral enable:
SYSCON |= 0x0004; // set XPEN, before EINIT-instr.!!!

// I2C control register configuration:
ICCON = 0x0008; // master mode
ICST  = 0x0000; // reset status register
ICCFG = 0x2711; // 100kHz @ 16MHz, SDA0, SCL0
XP0IC = 0x0000; // disable interrupt IRQD, use polling
XP1IC = 0x0000; // disable interrupt IRQP, use polling

// P3 configuration (provide external pullups on I2C-lines!):
_bfld_ (P3, 0x0003, 0x0003); // enable alternate function on P3.0-1
_bfld_ (DP3, 0x0003, 0x0003); // switch i2c pins to output

// slave address
ICRTB = 0x0000 | 0xA0; // write transmit buffer
ICCON |= BUM; // BUM=1: start cond. + send slave addr.
while((ICST & IRQD) == 0x0000); // waiting for end of transmission
if (ICST & LRB) // ACK?

{
ICST &= ~AL; // Clear bit AL
ICST &= ~IRQP; // Clear bit IRQP
}

// sub address
ICRTB = 0x0000|0x0000; // send sub-address
while((ICST & IRQD)== 0x0000); // waiting for end of transmission
if (ICST & LRB) // ACK?

{
ICST &= ~AL; // Clear bit AL
ICST &= ~IRQP; // Clear bit IRQP
}

// switch to master-receiver, send slave address with a repeated start:
ICCON |= RSC; // repeated start condition
ICRTB = 0x0000|0xA1; // write to transmit buffer
while((ICST & IRQD)== 0x0000); // waiting for end of transmission
if (ICST & LRB) // ACK?

{
ICST &= ~AL; // Clear bit AL
ICST &= ~IRQP; // Clear bit IRQP
}
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// drive clock (SCL) for first byte, give ack:
ICCON &= ~ACKDIS; // acknowledge from master
ICCON &= ~TRX; // TRX = 0 for master receiver
dummy = ICRTB; // start clock to receive the 1st byte
while((ICST & IRQD)==0x0000); // waiting for end of 1st byte

// read first byte, drive clock for second, give no ack:
ICCON |= ACKDIS; // no acknowledge from master
array[0] = ICRTB; // read ICRTB (1st byte),

// start clock to receive the 2nd byte
while((ICST & IRQD)==0x0000); // waiting for end of 2nd byte

// read 2nd byte without automatic clear of IRQD, generate STOP:
ICCON |= AIRDIS; // AIRDIS=1: read ICRTB, send no clock
array[1] = ICRTB; // read ICRTB (2nd byte)
ICCON &= ~BUM; // BUM=0: initiate stop condition
ICST  &= ~IRQD; // Clear bit IRQD

}
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18 System Reset   

The internal system reset function provides initialization of the C161RI into a defined default state
and is invoked either by asserting a hardware reset signal on pin RSTIN (Hardware Reset Input),
upon the execution of the SRST instruction (Software Reset) or by an overflow of the watchdog
timer. 

Whenever one of these conditions occurs, the microcontroller is reset into its predefined default
state through an internal reset procedure. When a reset is initiated, pending internal hold states are
cancelled and the current internal access cycle (if any) is completed. An external bus cycle is
aborted, except for a watchdog reset (see description). After that the bus pin drivers and the IO pin
drivers are switched off (tristate).

The internal reset procedure requires 516 CPU clock cycles in order to perform a complete reset
sequence. This 516 cycle reset sequence is started upon a watchdog timer overflow, a SRST
instruction or when the reset input signal RSTIN is latched low (hardware reset). The internal reset
condition is active at least for the duration of the reset sequence and then until the RSTIN input is
inactive. When this internal reset condition is removed (reset sequence complete, RSTIN inactive)
the reset configuration is latched from PORT0 and RD, and then pins ALE, RD and WR are driven
to their inactive levels.

Note: Bit ADP which selects the Adapt mode is latched with the rising edge of RSTIN.

After the internal reset condition is removed, the microcontroller will start program execution from
memory location 00’0000H in code segment zero. This start location will typically hold a branch
instruction to the start of a software initialization routine for the application specific configuration of
peripherals and CPU Special Function Registers.

   

Figure 18-1
External Reset Circuitry

C161RI
Semiconductor Group 18-1 1998-06-01



System Reset
C161RI
Hardware Reset

A hardware reset is triggered when the reset input signal RSTIN is latched low. To ensure the
recognition of the RSTIN signal (latching), it must be held low for at least 2 CPU clock cycles. Also
shorter RSTIN pulses may trigger a hardware reset, if they coincide with the latch’s sample point.
However, it is recommended to keep RSTIN low for ca. 1 ms. After the reset sequence has been
completed, the RSTIN input is sampled. When the reset input signal is active at that time the internal
reset condition is prolonged until RSTIN gets inactive.

During a hardware reset the PORT0 inputs for the reset configuration need some time to settle on
the required levels, especially if the hardware reset aborts a read operation from an external
peripheral. During this settling time the configuration may intermittently be wrong.

The input RSTIN provides an internal pullup device equalling a resistor of 50 KΩ to 150 KΩ (the
minimum reset time must be determined by the lowest value). Simply connecting an external
capacitor is sufficient for an automatic power-on reset (see b) in figure above). RSTIN may also be
connected to the output of other logic gates (see a) in figure above). See also section “Bidirectional
Reset” in this case).

Note: A power-on reset requires an active time of two reset sequences (1036 CPU clock cycles)
after a stable clock signal is available (about 10 … 50 ms to allow the on-chip oscillator to
stabilize).

Software Reset

The reset sequence can be triggered at any time via the protected instruction SRST (Software
Reset). This instruction can be executed deliberately within a program, e.g. to leave bootstrap
loader mode, or upon a hardware trap that reveals a system failure.

Note: A software reset disregards the configuration of P0L.5 … P0L.0.

Watchdog Timer Reset

When the watchdog timer is not disabled during the initialization or serviced regularly during
program execution is will overflow and trigger the reset sequence. Other than hardware and
software reset the watchdog reset completes a running external bus cycle if this bus cycle either
does not use READY at all, or if READY is sampled active (low) after the programmed waitstates.
When READY is sampled inactive (high) after the programmed waitstates the running external bus
cycle is aborted. Then the internal reset sequence is started.

Note: A watchdog reset disregards the configuration of P0L.5 … P0L.0.
The watchdog reset cannot occur while the C161RI is in bootstrap loader mode!
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Bidirectional Reset  

In a special mode (Bidirectional reset) the C161RI’s line RSTIN (normally an input) may be driven
active by the chip logic e.g. in order to support external equipment which is required for startup (e.g.
flash memory).

   

Figure 18-2
Bidirectional Reset Operation

Bidirectional reset reflects internal reset sources (software, watchdog) also to the RSTIN pin and
converts short hardware reset pulses to a minimum duration of the internal reset sequence.
Bidirectional reset is enabled by setting bit BDRSTEN in register SYSCON and changes RSTIN
from a pure input to an open drain IO line. When an internal reset is triggered by the SRST
instruction or by a watchdog timer overflow or a low level is applied to the RSTIN line, an internal
driver pulls it low for the duration of the internal reset sequence. After that it is released and is then
controlled by the external circuitry alone.

The Bidirectional reset function is useful in applications where external devices require a defined
reset signal but cannot be connected to the C161RI’s RSTOUT signal, e.g. an external flash
memory which must come out of reset and deliver code well before RSTOUT can be deactivated via
EINIT.

The following behavior differences must be observed when using the Bidirectional reset feature in
an application:

● Bit BDRSTEN in register SYSCON cannot be changed after EINIT.
● After a reset bit BDRSTEN is cleared.
● The reset indication flags always indicate a long hardware reset.
● The PORT0 configuration is treated like on a hardware reset. Especially the bootstrap loader

may be activated when P0L.4 is low.
● Pin RSTIN may only be connected to external reset devices with an open drain output driver.
● A short hardware reset is extended to the duration of the internal reset sequence.

Internal CircuitryRSTIN

&
Reset sequence active

BDRSTEN = ‘1’
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The C161RI’s Pins after Reset

After the reset sequence the different groups of pins of the C161RI are activated in different ways
depending on their function. Bus and control signals are activated immediately after the reset
sequence according to the configuration latched from PORT0, so either external accesses can
takes place or the external control signals are inactive. The general purpose IO pins remain in input
mode (high impedance) until reprogrammed via software (see figure below). The RSTOUT pin
remains active (low) until the end of the initialization routine (see description).

   

Figure 18-3
Reset Input and Output Signals

delayed until the end of the internal reset condition.

1) Current bus cycle is completed or aborted.

4) Activation of the IO pins is controlled by software.
5) Execution of the EINIT instruction.

When the internal reset condition is extended by RSTIN, the activation of the output signals is

2) Switches asynchronously with RSTIN, synchronously upon software or watchdog reset.
3) The reset condition ends here. The C161RI starts program execution.

6) The shaded area designates the internal reset sequence, which starts after synchronization of RSTIN.

RSTIN

Internal Reset Condition

6)

Initialization

3)

MCD03902

RD, WR

RSTOUT

IO

ALE

Bus

RSTIN

Internal Reset Condition

6)

1)

2)

2)

Initialization

3)
~~

~~

~~
~~

~~

~~

~~

~~

~~

5)

4)

8)

7)

7) A short hardware reset is extended until the end of the reset sequence in Bidirectional reset mode.
8) A software or WDT reset activates the RSTIN line in Bidirectional reset mode.
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Reset Output Pin   

The RSTOUT pin is dedicated to generate a reset signal for the system components besides the
controller itself. RSTOUT will be driven active (low) at the begin of any reset sequence (triggered by
hardware, the SRST instruction or a watchdog timer overflow). RSTOUT stays active (low) beyond
the end of the internal reset sequence until the protected EINIT (End of Initialization) instruction is
executed (see figure above). This allows the complete configuration of the controller including its
on-chip peripheral units before releasing the reset signal for the external peripherals of the system.

Note: RSTOUT will float as long as pins P0L.0 and P0L.1 select emulation mode or adapt mode.

Watchdog Timer Operation after Reset   

The watchdog timer starts running after the internal reset has completed. It will be clocked with the
internal system clock divided by 2 (fCPU / 2), and its default reload value is 00H, so a watchdog timer
overflow will occur 131072 CPU clock cycles (2 * 216) after completion of the internal reset, unless
it is disabled, serviced or reprogrammed meanwhile. When the system reset was caused by a
watchdog timer overflow, the WDTR (Watchdog Timer Reset Indication) flag in register WDTCON
will be set to ’1’. This indicates the cause of the internal reset to the software initialization routine.
WDTR is reset to ’0’ by an external hardware reset, by servicing the watchdog timer or after EINIT.
After the internal reset has completed, the operation of the watchdog timer can be disabled by the
DISWDT (Disable Watchdog Timer) instruction. This instruction has been implemented as a
protected instruction. For further security, its execution is only enabled in the time period after a
reset until either the SRVWDT (Service Watchdog Timer) or the EINIT instruction has been
executed. Thereafter the DISWDT instruction will have no effect.

Reset Values for the C161RI Registers   

During the reset sequence the registers of the C161RI are preset with a default value. Most SFRs,
including system registers and peripheral control and data registers, are cleared to zero, so all
peripherals and the interrupt system are off or idle after reset. A few exceptions to this rule provide
a first pre-initialization, which is either fixed or controlled by input pins.

DPP1: 0001H (points to data page 1)
DPP2: 0002H (points to data page 2)
DPP3: 0003H (points to data page 3)
CP: FC00H 
STKUN: FC00H 
STKOV: FA00H 
SP: FC00H 
WDTCON: 00XXH (value depends on the reset source)
S0RBUF: XXH (undefined)
SSCRB: XXXXH (undefined)
SYSCON: 0XX0H (set according to reset configuration)
BUSCON0: 0XX0H (set according to reset configuration)
RP0H: XXH (reset levels of P0H)
ONES: FFFFH (fixed value)
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The Internal RAM after Reset

The contents of the internal RAM are not affected by a system reset. However, after a power-on
reset, the contents of the internal RAM are undefined. This implies that the GPRs (R15 … R0) and
the PEC source and destination pointers (SRCP7 … SRCP0, DSTP7 … DSTP0) which are
mapped into the internal RAM are also unchanged after a warm reset, software reset or watchdog
reset, but are undefined after a power-on reset.

Ports and External Bus Configuration during Reset   

During the internal reset sequence all of the C161RI’s port pins are configured as inputs by clearing
the associated direction registers, and their pin drivers are switched to the high impedance state.
This ensures that the C161RI and external devices will not try to drive the same pin to different
levels. Pin ALE is held low through an internal pulldown, and pins RD, WR and READY are held
high through internal pullups. Also the pins selected for CS output will be pulled high.

The registers SYSCON and BUSCON0 are initialized according to the configuration selected via
PORT0.

When an external start is selected (pin EA = ’0’):
• the Bus Type field (BTYP) in register BUSCON0 is initialized according to P0L.7 and P0L.6
• bit BUSACT0 in register BUSCON0 is set to ‘1’
• bit ALECTL0 in register BUSCON0 is set to ‘1’
• bit ROMEN in register SYSCON will be cleared to ‘0’
• bit BYTDIS in register SYSCON is set according to the data bus width
• bit WRCFG in register SYSCON is set according to pin P0H.0 (WRC)

When an internal start is selected (pin EA = ’1’):
• register BUSCON0 is cleared to 0000H

• bit ROMEN in register SYSCON will be set to ‘1’
• bit BYTDIS in register SYSCON is cleared, i.e. BHE/WRH is enabled
• bit WRCFG in register SYSCON is set according to pin P0H.0 (WRC)

The other bits of register BUSCON0, and the other BUSCON registers are cleared. This default
initialization selects the slowest possible external accesses using the configured bus type.

When the internal reset has completed, the configuration of PORT0, PORT1, Port 4 Port 6 and of
the BHE signal (High Byte Enable, alternate function of P3.12) depends on the bus type which was
selected during reset. When any of the external bus modes was selected during reset, PORT0 will
operate in the selected bus mode. Port 4 will output the selected number of segment address lines
(all zero after reset) and Port 6 will drive the selected number of CS lines (CS0 will be ‘0’, while the
other active CS lines will be ‘1’). When no memory accesses above 64 K are to be performed,
segmentation may be disabled.

When the on-chip bootstrap loader was activated during reset, pin TxD0 (alternate function of
P3.10) will be switched to output mode after the reception of the zero byte.

All other pins remain in the high-impedance state until they are changed by software or peripheral
operation.
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Application-Specific Initialization Routine

After the internal reset condition is removed the C161RI fetches the first instruction from location
00’0000H, which is the first vector in the trap/interrupt vector table, the reset vector. 4 words
(locations 00’0000H through 00’0006H) are provided in this table to start the initialization after reset.
As a rule, this location holds a branch instruction to the actual initialization routine that may be
located anywhere in the address space.

Note: When the Bootstrap Loader Mode was activated during a hardware reset the C161RI does
not fetch instructions from location 00’0000H but rather expects data via serial interface
ASC0.

If single chip mode is selected during reset, the first instruction is fetched from the internal ROM/
OTP/Flash. Otherwise it is fetched from external memory. When internal ROM access is enabled
after reset in single chip mode (bit ROMEN = ’1’ in register SYSCON), the software initialization
routine may enable and configure the external bus interface before the execution of the EINIT
instruction. When external access is enabled after reset, it may be desirable to reconfigure the
external bus characteristics, because the BUSCON0 register is initialized during reset to the
slowest possible memory configuration.

To decrease the number of instructions required to initialize the C161RI, each peripheral is
programmed to a default configuration upon reset, but is disabled from operation. These default
configurations can be found in the descriptions of the individual peripherals.

During the software design phase, portions of the internal memory space must be assigned to
register banks and system stack. When initializing the stack pointer (SP) and the context pointer
(CP) it must be ensured that these registers are initialized before any GPR or stack operation is
performed. This includes interrupt processing, which is disabled upon completion of the internal
reset and should remain disabled until the SP is initialized.

Note: Traps (incl. NMI) may occur, even though the interrupt system is still disabled.

In addition, the stack overflow (STKOV) and the stack underflow (STKUN) registers should be
initialized. After reset, the CP, SP, and STKUN registers all contain the same reset value 00’FC00H,
while the STKOV register contains 00’FA00H. With the default reset initialization, 256 words of
system stack are available, where the system stack selected by the SP grows downwards from
00’FBFEH, while the register bank selected by the CP grows upwards from 00’FC00H.

Based on the application, the user may wish to initialize portions of the internal memory before
normal program operation. Once the register bank has been selected by programming the CP
register, the desired portions of the internal memory can easily be initialized via indirect addressing.

At the end of the initialization, the interrupt system may be globally enabled by setting bit IEN in
register PSW. Care must be taken not to enable the interrupt system before the initialization is
complete in order to avoid e.g. the corruption of internal memory locations by stack operations using
an uninitialized stack pointer.

The software initialization routine should be terminated with the EINIT instruction. This instruction
has been implemented as a protected instruction.
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The execution of the EINIT instruction …

● disables the action of the DISWDT instruction,
● disables write accesses to register SYSCON (all configurations regarding register SYSCON

(enable CLKOUT, stacksize, etc.) must be selected before the execution of EINIT),
● disables write accesses to registers SYSCON2 and SYSCON3 (further write accesses to

SYSCON2 and SYSCON3 can be executed only using a special unlock mechanism),
● clears the reset source detection bits in register WDTCON,
● causes the RSTOUT pin to go high (this signal can be used to indicate the end of the initialization

routine and the proper operation of the microcontroller to external hardware).

18.1 System Startup Configuration

Although most of the programmable features of the C161RI are either selected during the
initialization phase or repeatedly during program execution, there are some features that must be
selected earlier, because they are used for the first access of the program execution (e.g. internal
or external start selected via EA).

These selections are made during reset via the pins of PORT0, which are read at the end of the
internal reset sequence. During reset internal pullup devices are active on the PORT0 lines, so their
input level is high, if the respective pin is left open, or is low, if the respective pin is connected to an
external pulldown device. With the coding of the selections, as shown below, in many cases the
default option, i.e. high level, can be used.

The value on the upper byte of PORT0 (P0H) is latched into register RP0H upon reset, the value on
the lower byte (P0L) directly influences the BUSCON0 register (bus mode) or the internal control
logic of the C161RI.

    

Figure 18-4
PORT0 Configuration during Reset

EMUADPWRC

L.5 L.4 L.3 L.2 L.1 L.0H.3 H.2 H.1 H.0 L.7 L.6H.7 H.6 H.5 H.4

CSSELSALSEL BUSTYP

R
P

0H

Port 4
Logic

Port 6
Logic

SYSCON BUSCON0

Internal Control Logic
(Only on hardware reset)

CLKCFG

Clock
Generator

SMOD
Semiconductor Group 18-8 1998-06-01



System Reset
C161RI
The pins that control the operation of the internal control logic and the reserved pins are evaluated
only during a hardware triggered reset sequence. The pins that influence the configuration of the
C161RI are evaluated during any reset sequence, i.e. also during software and watchdog timer
triggered resets.

The configuration via P0H is latched in register RP0H for subsequent evaluation by software.
Register RP0H is described in chapter “The External Bus Interface”.

Note: The load on those pins that shall be latched as ‘1’ must be small enough for the internal
pullup device to keep their level high, or external pullup devices must ensure the high level.
Those pins that shall be latched as ‘0’ must be pulled low externally.
Make sure that the valid target levels are reached until the end of the reset sequence.
There is a specific application note to illustrate this.

The following describes the different selections that are offered for reset configuration. The default
modes refer to pins at high level, i.e. without external pulldown devices connected.
Please also consider the note above.

Emulation Mode   

Pin P0L.0 (EMU) selects the Emulation Mode, when low during reset. This mode allows the access
to integrated XBUS peripherals via the external bus interface pins in application specific versions of
the C161RI. In addition also the RSTOUT pin floats to tristate rather than be driven low. When the
emulation mode has been latched the CLKOUT output is automatically enabled.

This mode is used for special emulator purposes and is of no use in basic C161RI devices, so P0L.0
should be held high.

Default: Emulation Mode is off.

Note: In emulation mode the direct drive clock option is selected with P0.15 (P0H.7) = ‘1’.

Adapt Mode   

Pin P0L.1 (ADP) selects the Adapt Mode, when low during reset. In this mode the C161RI goes into
a passive state, which is similar to its state during reset. The pins of the C161RI float to tristate or
are deactivated via internal pullup/pulldown devices, as described for the reset state. In addition
also the RSTOUT pin floats to tristate rather than be driven low, and the on-chip oscillator is
switched off.

This mode allows switching a C161RI that is mounted to a board virtually off, so an emulator may
control the board’s circuitry, even though the original C161RI remains in its place. The original
C161RI also may resume to control the board after a reset sequence with P0L.1 high. Please note
that adapt mode overrides any other configuration via PORT0.

Default: Adapt Mode is off.

Note: When XTAL1 is fed by an external clock generator (while XTAL2 is left open), this clock
signal may also be used to drive the emulator device.
However, if a crystal is used, the emulator device’s oscillator can use this crystal only, if at
least XTAL2 of the original device is disconnected from the circuitry (the output XTAL2 will be
driven high in Adapt Mode).
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Special Operation Modes   

Pins P0L.5 to P0L.2 (SMOD) select special operation modes of the C161RI during reset (see table
below). Make sure to only select valid configurations in order to ensure proper operation of the
C161RI.

   

The on-chip Bootstrap Loader allows moving the start code into the internal RAM of the C161RI
via the serial interface ASC0. The C161RI will remain in bootstrap loader mode until a hardware
reset not selecting BSL mode or a software reset.   

Default: The C161RI starts fetching code from location 00’0000H, the bootstrap loader is off.

Definition of Special Modes for Reset Configuration

P0.5-2
(P0L.5-2)

Special Mode Notes

1 1 1 1 Normal Start Default configuration.
Begin of execution as defined via pin EA.

1 1 1 0 Reserved Do not select this configuration!

1 1 0 1 Reserved Do not select this configuration!

1 1 0 0 Reserved Do not select this configuration!

1 0 1 1 Bootstrap Loader Load boot routine via ASC0.

1 0 1 0 Reserved Do not select this configuration!

1 0 0 1 Reserved Do not select this configuration!

1 0 0 0 Reserved Do not select this configuration!

0 1 1 1 Reserved Do not select this configuration!

0 1 1 0 Reserved Do not select this configuration!

0 1 0 1 Reserved Do not select this configuration!

0 1 0 0 Reserved Do not select this configuration!

0 0 X X Reserved Do not select this configuration!
Semiconductor Group 18-10 1998-06-01



System Reset
C161RI
External Bus Type   

Pins P0L.7 and P0L.6 (BUSTYP) select the external bus type during reset, if an external start is
selected via pin EA. This allows the configuration of the external bus interface of the C161RI even
for the first code fetch after reset. The two bits are copied into bit field BTYP of register BUSCON0.
P0L.7 controls the data bus width, while P0L.6 controls the address output (multiplexed or
demultiplexed). This bit field may be changed via software after reset, if required.   

PORT0 and PORT1 are automatically switched to the selected bus mode. In multiplexed bus
modes PORT0 drives both the 16-bit intra-segment address and the output data, while PORT1
remains in high impedance state as long as no demultiplexed bus is selected via one of the
BUSCON registers. In demultiplexed bus modes PORT1 drives the 16-bit intra-segment address,
while PORT0 or P0L (according to the selected data bus width) drives the output data.
For a 16-bit data bus BHE is automatically enabled, for an 8-bit data bus BHE is disabled via bit
BYTDIS in register SYSCON.

Default: 16-bit data bus with multiplexed addresses.

Note: If an internal start is selected via pin EA, these two pins are disregarded and bit field BTYP
of register BUSCON0 is cleared.

Write Configuration   

Pin P0H.0 (WRC) selects the initial operation of the control pins WR and BHE during reset. When
high, this pin selects the standard function, i.e. WR control and BHE. When low, it selects the
alternate configuration, i.e. WRH and WRL. Thus even the first access after a reset can go to a
memory controlled via WRH and WRL. This bit is latched in register RP0H and its inverted value is
copied into bit WRCFG in register SYSCON.

Default: Standard function (WR control and BHE).

BTYP Encoding External Data Bus Width External Address Bus Mode

0 0 8-bit Data Demultiplexed Addresses

0 1 8-bit Data Multiplexed Addresses

1 0 16-bit Data Demultiplexed Addresses

1 1 16-bit Data Multiplexed Addresses
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Chip Select Lines   

Pins P0H.2 and P0H.1 (CSSEL) define the number of active chip select signals during reset. This
allows the selection which pins of Port 6 drive external CS signals and which are used for general
purpose IO. The two bits are latched in register RP0H.

Default: All 5 chip select lines active (CS4 … CS0).   

Note: The selected number of CS signals cannot be changed via software after reset.

Segment Address Lines   

Pins P0H.4 and P0H.3 (SALSEL) define the number of active segment address lines during reset.
This allows the selection which pins of Port 4 drive address lines and which are used for general
purpose IO. The two bits are latched in register RP0H. Depending on the system architecture the
required address space is chosen and accessible right from the start, so the initialization routine can
directly access all locations without prior programming. The required pins of Port 4 are automatically
switched to address output mode.   

Even if not all segment address lines are enabled on Port 4, the C161RI internally uses its complete
24-bit addressing mechanism. This allows the restriction of the width of the effective address bus,
while still deriving CS signals from the complete addresses.

Default: 2-bit segment address (A17 … A16) allowing access to 256 KByte.

Note: The selected number of segment address lines cannot be changed via software after reset.

CSSEL Chip Select Lines Note

1 1 Five: CS4 … CS0 Default without pull-downs

1 0 None Port 6 pins free for IO

0 1 Two: CS1 … CS0

0 0 Three: CS2 … CS0

SALSEL Segment Address Lines Directly accessible Address Space

1 1 Two: A17 … A16 256 KByte (Default without pull-downs)

1 0 Seven: A22 … A16 8 MByte (Maximum)

0 1 None 64 KByte (Minimum)

0 0 Four: A19 … A16 1 MByte
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Clock Generation Control   

Pins P0H.7, P0H.6 and P0H.5 (CLKCFG) select the basic clock generation mode during reset. The
oscillator clock either directly feeds the CPU and peripherals (direct drive) or it is divided by 2. These
bits are latched in register RP0H. 

  

1) The maximum depends on the duty cycle of the external clock signal.
In emulation mode pin P0.15 (P0H.7) is inverted, i.e. the configuration ‘111’ would select
direct drive in emulation mode.

Default: Reserved combination. Select a valid configuration in any case!

Note: Watch the different requirements for frequency and duty cycle of the oscillator input clock for
the possible selections.

C161RI Clock Generation Modes   

P0.15-13
(P0H.7-5)

CPU Frequency 
fCPU = fOSC × F

External Clock Input 
Range

Notes

1 1 1 Reserved Default configuration

1 1 0 Reserved

1 0 1 Reserved

1 0 0 Reserved

0 1 1 fXTAL × 1 1 to 20 MHz Direct drive 1)

0 1 0 Reserved

0 0 1 fXTAL / 2 2 to 40 MHz Prescaler operation

0 0 0 Reserved
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19 Power Management   

For an increasing number of microcontroller based systems it is an important objective to reduce the
power consumption of the system as much as possible. A contradictory objective is, however, to
reach a certain level of system performance. Besides optimization of design and technology a
microcontroller’s power consumption can generally be reduced by lowering its operating frequency
and/or by reducing the circuitry that is clocked. The architecture of the C161RI provides three major
means of reducing its power consumption (see figure below) under software control:

● Reduction of the CPU frequency for Slow Down operation (Flexible Clock Gen. Management)
● Selection of the active peripheral modules (Flexible Peripheral Management)
● Special operating modes to deactivate CPU, port drivers and control logic (Idle, Power Down)

This enables the application (i.e. the programmer) to choose the optimum constellation for each
operating condition, so the power consumption can be adapted to conditions like maximum
performance, partial performance, intermittend operation or standby.

Intermittend operation (i.e. alternating phases of high performance and power saving) is supported
by the cyclic interrupt generation mode of the on-chip RTC (real time clock).

   

Figure 19-1
Power Reduction Possibilities
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These three means described above can be applied independent from each other and thus provide
a maximum of flexibility for each application.

For the basic power reduction modes (Idle, Power Down) there are dedicated instructions, while
special registers control clock generation (SYSCON2) and peripheral management (SYSCON3).

Two different general power reduction modes with different levels of power reduction have been
implemented in the C161RI, which may be entered under software control.

In Idle mode the CPU is stopped, while the (enabled) peripherals continue their operation. Idle
mode can be terminated by any reset or interrupt request.

In Power Down mode both the CPU and the peripherals are stopped. The real time clock and its
selected oscillator may optionally be kept running. Power Down mode can only be terminated by a
hardware reset.

Note: All external bus actions are completed before Idle or Power Down mode is entered.
However, Idle or Power Down mode is not entered if READY is enabled, but has not been
activated (driven low) during the last bus access.

In addition the power management selects the current CPU frequency and controls which
peripherals are active.

During Slow Down operation the basic clock generation path is bypassed and the CPU clock is
generated via the programmable Slow Down Divider (SDD) from the selected oscillator clock signal.

Peripheral Management disables and enables the on-chip peripheral modules independently,
reducing the amount of clocked circuitry including the respective clock drivers.

19.1 Idle Mode   

The power consumption of the C161RI microcontroller can be decreased by entering Idle mode. In
this mode all enabled peripherals, including the watchdog timer, continue to operate normally, only
the CPU operation is halted and the on-chip memory modules are disabled.

Note: Peripherals that have been disabled via software also remain disabled after entering Idle
mode, of course.

Idle mode is entered after the IDLE instruction has been executed and the instruction before the
IDLE instruction has been completed. To prevent unintentional entry into Idle mode, the IDLE
instruction has been implemented as a protected 32-bit instruction.

Idle mode is terminated by interrupt requests from any enabled interrupt source whose individual
Interrupt Enable flag was set before the Idle mode was entered, regardless of bit IEN.

For a request selected for CPU interrupt service the associated interrupt service routine is entered
if the priority level of the requesting source is higher than the current CPU priority and the interrupt
system is globally enabled. After the RETI (Return from Interrupt) instruction of the interrupt service
routine is executed the CPU continues executing the program with the instruction following the IDLE
instruction. Otherwise, if the interrupt request cannot be serviced because of a too low priority or a
globally disabled interrupt system the CPU immediately resumes normal program execution with
the instruction following the IDLE instruction.
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For a request which was programmed for PEC service a PEC data transfer is performed if the
priority level of this request is higher than the current CPU priority and the interrupt system is
globally enabled. After the PEC data transfer has been completed the CPU remains in Idle mode.
Otherwise, if the PEC request cannot be serviced because of a too low priority or a globally disabled
interrupt system the CPU does not remain in Idle mode but continues program execution with the
instruction following the IDLE instruction.

   

Figure 19-2
Transitions between Idle mode and Active Mode

Idle mode can also be terminated by a Non-Maskable Interrupt, i.e. a high to low transition on the
NMI pin. After Idle mode has been terminated by an interrupt or NMI request, the interrupt system
performs a round of prioritization to determine the highest priority request. In the case of an NMI
request, the NMI trap will always be entered.

Any interrupt request whose individual Interrupt Enable flag was set before Idle mode was entered
will terminate Idle mode regardless of the current CPU priority. The CPU will not go back into Idle
mode when a CPU interrupt request is detected, even when the interrupt was not serviced because
of a higher CPU priority or a globally disabled interrupt system (IEN = ’0’). The CPU will only go
back into Idle mode when the interrupt system is globally enabled (IEN = ’1’) and a PEC service on
a priority level higher than the current CPU level is requested and executed.

Note: An interrupt request which is individually enabled and assigned to priority level 0 will
terminate Idle mode. The associated interrupt vector will not be accessed, however.

The watchdog timer may be used to monitor the Idle mode: an internal reset will be generated if no
interrupt or NMI request occurs before the watchdog timer overflows. To prevent the watchdog timer
from overflowing during Idle mode it must be programmed to a reasonable time interval before Idle
mode is entered.
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19.2 Power Down Mode   

To further reduce the power consumption the microcontroller can be switched to Power Down
mode. Clocking of all internal blocks is stopped (RTC and selected oscillator optionally), the
contents of the internal RAM, however, are preserved through the voltage supplied via the VDD pins.
The watchdog timer is stopped in Power Down mode. This mode can only be terminated by an
external hardware reset, i.e. by asserting a low level on the RSTIN pin. This reset will initialize all
SFRs and ports to their default state, but will not change the contents of the internal RAM.

There are two levels of protection against unintentionally entering Power Down mode. First, the
PWRDN (Power Down) instruction which is used to enter this mode has been implemented as a
protected 32-bit instruction. Second, this instruction is effective only if the NMI (Non Maskable
Interrupt) pin is externally pulled low while the PWRDN instruction is executed. The microcontroller
will enter Power Down mode after the PWRDN instruction has completed.

This feature can be used in conjunction with an external power failure signal which pulls the NMI pin
low when a power failure is imminent. The microcontroller will enter the NMI trap routine which can
save the internal state into RAM. After the internal state has been saved, the trap routine may then
execute the PWRDN instruction. If the NMI pin is still low at this time, Power Down mode will be
entered, otherwise program execution continues.

The initialization routine (executed upon reset) can check the reset identification flags in register
WDTCON to determine whether the controller was initially switched on, or whether it was properly
restarted from Power Down mode.

The realtime clock (RTC) can be kept running in Power Down mode in order to maintain a valid
system time as long as the supply voltage is applied. This enables a system to determine the current
time and the duration of the period while it was down (by comparing the current time with a
timestamp stored when Power Down mode was entered). The supply current in this case remains
well below 1 mA.

During power down the voltage at the VDD pins can be lowered to 2.7 V while the RTC and its
selected oscillator will still keep on running and the contents of the internal RAM will still be
preserved.
When the RTC (and oscillator) is disabled the internal RAM is preserved down to a voltage of 2.5 V.

Note: When the RTC remains active in Power Down mode also the oscillator which generates the
RTC clock signal will keep on running, of course.
If the supply voltage is reduced the specified maximum CPU clock frequency for this case
must be respected.

The total power consumption in Power Down mode depends on the active circuitry (i.e. RTC on or
off) and on the current that flows through the port drivers. To minimize the consumed current the
RTC and/or all pin drivers can be disabled (pins switched to tristate) via a central control bitfield in
register SYSCON2. If an application requires one or more port drivers to remain active even in
Power Down mode also individual port drivers can be disabled simply by configuring them for input.

The bus interface pins can be separately disabled by releasing the external bus (disable all address
windows by clearing the BUSACT bits) and switching the ports to input (if necessary). Of course the
required software in this case must be executed from internal memory.
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Status of Output Pins during Power Reduction Modes

During Idle mode the CPU clocks are turned off, while all peripherals continue their operation in the
normal way. Therefore all ports pins, which are configured as general purpose output pins, output
the last data value which was written to their port output latches. If the alternate output function of
a port pin is used by a peripheral, the state of the pin is determined by the operation of the
peripheral.

Port pins which are used for bus control functions go into that state which represents the inactive
state of the respective function (e.g. WR), or to a defined state which is based on the last bus access
(e.g. BHE). Port pins which are used as external address/data bus hold the address/data which was
output during the last external memory access before entry into Idle mode under the following
conditions:

P0H outputs the high byte of the last address if a multiplexed bus mode with 8-bit data bus is used,
otherwise P0H is floating. P0L is always floating in Idle mode.

PORT1 outputs the lower 16 bits of the last address if a demultiplexed bus mode is used, otherwise
the output pins of PORT1 represent the port latch data.

Port 4 outputs the segment address for the last access on those pins that were selected during
reset, otherwise the output pins of Port 4 represent the port latch data.

During Power Down mode the oscillator (except for RTC operation) and the clocks to the CPU and
to the peripherals are turned off. Like in Idle mode, all port pins which are configured as general
purpose output pins output the last data value which was written to their port output latches. 

When the alternate output function of a port pin is used by a peripheral the state of this pin is
determined by the last action of the peripheral before the clocks were switched off.

Note: All pin drivers can be switched off by selecting the general port disable function prior to
entering Power Down mode.
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Note:
1): High if EINIT was executed before entering Idle or Power Down mode, Low otherwise.
2): For multiplexed buses with 8-bit data bus.
3): For demultiplexed buses.
4): The CS signal that corresponds to the last address remains active (low), all other enabled CS

signals remain inactive (high). By accessing an on-chip X-Periperal prior to entering a power
save mode all external CS signals can be deactivated.

State of C161RI Output Pins during Idle and Power Down Mode

C161RI
Output Pin(s)

Idle Mode Power Down Mode
(if pin drivers are generally enabled)

No
external bus

External bus
enabled

No
external bus

External bus
enabled

ALE Low Low Low Low

RD, WR High High High High

CLKOUT Active Active High High

RSTOUT 1) 1) 1) 1)

P0L Port Latch Data Floating Port Latch Data Floating

P0H Port Latch Data A15 … A8 2)/Float Port Latch Data A15 … A8 2)/Float

PORT1 Port Latch Data Last Address 3) /
Port Latch Data

Port Latch Data Last Address 3) /
Port Latch Data

Port 4 Port Latch Data Port Latch Data/
Last segment

Port Latch Data Port Latch Data/
Last segment

BHE Port Latch Data Last value Port Latch Data Last value

CSx Port Latch Data Last value 4) Port Latch Data Last value 4)

Other Port 
Output Pins

Port Latch Data / 
Alternate Function

Port Latch Data / 
Alternate Function

Port Latch Data / 
Alternate Function

Port Latch Data / 
Alternate Function
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19.3 Slow Down Operation   

A separate clock path can be selected for Slow Down operation bypassing the basic clock path used
for standard operation. The programmable Slow Down Divider (SDD) divides the oscillator
frequency by a factor of 1 … 32 which is specified via bitfield CLKREL in register SYSCON2. When
bitfield CLKREL is written during SDD operation the reload counter will output one more clock pulse
with the “old” frequency in order to resynchronize internally before generating the “new” frequency.

    

Figure 19-3
Slow Down Divider Operation

Using e.g. a 5 MHz input clock the on-chip logic may be run at a frequency down to 156.25 KHz
without an external hardware change.

Note: During Slow Down operation the whole device (including bus interface and generation of
signal CLKOUT) is clocked with the asymmetrical SDD clock (see figure above).

All these clock options are selected via bitfield CLKCON in register SYSCON2. A state machine
controls the switching mechanism itself and ensures a continuous and glitch-free clock signal to the
on-chip logic.

Switching to Slow Down operation affects frequency sensitive peripherals like serial interfaces,
timers, PWM, etc. If these units are to be operated in Slow Down mode their precalers or reload
values must be adapted. Please note that the reduced CPU frequency decreases e.g. timer
resolution and increases the step width e.g. for baudrate generation. The oscillator frequency in
such a case should be chosen to accommodate the required resolutions and/or baudrates.
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SYSCON2 (F1D0H / E8H)  ESFR   Reset Value: 00X0H  

Note: SYSCON2 (except for bitfield SYSRLS, of course) is write protected after the execution of
EINIT unless it is released via the unlock sequence.

Bit Function

SYSRLS SYSCON Release Function (Unlock field)
Must be written in a defined way in order to execute the unlock sequence.
See separate description

PDCON Power Down Control  (during power down mode)
00: RTC = On, Ports = On  (default after reset).
01: RTC = On, Ports = Off.
10: RTC = Off, Ports = On.
11: RTC = Off, Ports = Off.

RCS RTC Clock Source (not affected by a reset)
0: Main oscillator.
1: Reserved.

SCS SDD Clock Source (not affected by a reset)
0: Main oscillator.
1: Reserved.

CLKCON Clock State Control
00: Running on configured basic frequency.
01: Running on slow down frequency.
10: Reserved. Do not use this combination.
11: Reserved. Do not use this combination.

CLKREL Reload Counter Value for Slowdown Divider (SDD factor = CLKREL + 1)

CLKLOCK Clock Signal Status Bit
0: Main oscillator is unstable.
1: Main oscillator is stable.

Any running software requires an active clock signal and so never
will see CLKLOCK = ’0’.

RCSSCS
CLK

LOCK

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rwrw rw rw r rw

CLKREL CLKCON SYSRLSPDCON
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Figure 19-4
Clock Switching State Machine
   

Clock Switching State Description

State
Number

fCPU
Source

CLK 
CON

Note

1 Basic 00 Standard operation on basic clock frequency.

2 SDD 01 SDD operation. Manual switch back to basic clock frequency.

21

Reset

00

01

xx State transition when writing “xx” to CLKCON.
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19.4 Flexible Peripheral Management   

The power consumed by the C161RI also depends on the amount of active logic. Peripheral
management enables the system designer to deactivate those on-chip peripherals that are not
required in a given system status (e.g. a certain interface mode or standby). All modules that remain
active, however, will still deliver their usual performance. If all modules that are fed by the peripheral
clock driver (PCD) are disabled and also the other functions fed by the PCD are not required, this
clock driver itself may also be disabled to save additional power.

This flexibility is realized by distributing the CPU clock via several clock drivers which can be
separately controlled, and may also be smaller.

   

Figure 19-5
CPU Clock Distribution   

Note: The Real Time Clock (RTC) is fed by a separate clock driver, so it can be kept running even
in Power Down mode while still all the other circuitry is disconnected from the clock.

The registers of the generic peripherals can be accessed even while the respective module is
disabled, as long as PCD is running (the registers of peripherals which are connected to ICD can be
accessed even in this case, of course). The registers of X-peripherals cannot be accessed while the
respective module is disabled by any means.

While a peripheral is disabled its output pins remain in the state they had at the time of disabling.

Clock 
Generation

RTC

CPU

Peripherals,

Interface

Ports, Intr.Ctrl.

C
C

D
P

C
D

IC
D

Idle mode

PCDDIS

Peripherals
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Software controls this flexible peripheral mangement via register SYSCON3 where each control bit
is associated with an on-chip peripheral module.   

SYSCON3 (F1D4H / EAH)  ESFR   Reset Value: 0000H   

Note: The allocation of peripheral disable bits within register SYSCON3 is device specific and may
be different in other derivatives than the C161RI.
SYSCON3 is write protected after the execution of EINIT unless it is released via the unlock
sequence.

When disabling the peripheral clock driver (PCD), the following details should be respected:

● The clock signal for all connected peripherals is stopped. Make sure that all peripherals enter a
safe state before disabling PCD.

● The output signal CLKOUT will remain high (‘1’).
● Interrupt requests will still be recognized even while PCD is disabled.
● No new output values are gated from the port output latches to the output port pins and no new

input values are latched from the input port pins.

Bit Function (associated peripheral module)

ADCDIS Analog/Digital Converter

ASC0DIS USART ASC0

SSCDIS Synchronous Serial Channel SSC

GPTDIS General Purpose Timer Blocks

I2CDIS On-chip I2C-Bus Module

PCDDIS Peripheral Clock Driver (also X-Peripherals)

---
I2C 
DIS

PCD 
DIS - --

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- - rw rwrw - - -rw -

-
ADC 
DIS

- - rw rw

ASC0
DIS

SSC 
DIS

GPT
DIS---
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Security Mechanism  

The power management control registers SYSCON2 and SYSCON3 control functions and modes
which are critical for the C161RI’s operation. For this reason they are locked (except for bitfield
SYSRLS in register SYSCON2) after the execution of EINIT (like register SYSCON) so these vital
system functions cannot be changed inadvertently e.g. by software errors. However, as these
registers control the power management they need to be accessed during operation to select the
appropriate mode. The system control software gets this access via a special unlock sequence
which allows one single write access to either SYSCON2 or SYSCON3 when executed properly.
This provides a maximum of security.

Note: Of course SYSCON2 and SYSCON3 may be read at any time without restrictions.

The unlock sequence is executed by writing defined values to bitfield SYSRLS using defined
instructions (see table below). The instructions of the unlock sequence (including the intended write
access) must be secured with an EXTR instruction (switch to ESFR space and lock interrupts).

Note: The unlock sequence provides no write access to register SYSCON.

   

Note: 1) SYSRLS must be set to 0000B before the first step, if any OR command is used.
2) Usually byte accesses should not be used for special function registers.
3) SYSRLS is cleared by hardware if unlock sequence and write access were successful.

SYSRLS shows the last value written otherwise.

SYSCON2/SYSCON3 Unlock Sequence  

Step SYSRLS Instruction Notes

--- 0000B
1) --- Status before release sequence

1 1001B BFLDL, OR, ORB2), XOR, XORB2) Read-Modify-Write access

2 0011B MOV, MOVB2), MOVBS2), MOVBZ2) Write access

3 0111B BSET, BMOV2), BMOVN2),
BOR2), BXOR1)

Read-Modify-Write access,
bit instruction

4 --- --- Single (read-modify-)write access to 
SYSCON2 or SYSCON3.

--- 0000B
3) --- Status after release sequence
Semiconductor Group 19-12 1998-05-01



Power Management
C161RI
The code examples below show how an access to SYSCON2/SYSCON3 can be accomplished in
an application.

ENTER_SLOWDOWN: ;Currently running on basic clock frequ.
EXTR #4H ;Switch to ESFR space and lock sequence
BFLDL SYSCON2,#0FH,#09H ;Unlock sequence, step 1 (1001B)
MOV SYSCON2,#0003H ;Unlock sequence, step 2 (0011B)
BSET SYSCON2.2 ;Unlock sequence, step 3 (0111B)

;Single access to SYSCON2/SYSCON3
BFLDH SYSCON2,#03H,#01H ;CLKCON=01B --> SDD frequency

EXIT_SLOWDOWN: ;Currently running on SDD frequency
EXTR #4H ;Switch to ESFR space and lock sequence
BFLDL SYSCON2,#0FH,#09H ;Unlock sequence, step 1 (1001B)
MOV SYSCON2,#0003H ;Unlock sequence, step 2 (0011B)
BSET SYSCON2.2 ;Unlock sequence, step 3 (0111B)

;Single access to SYSCON2/SYSCON3
BFLDH SYSCON2,#03H,#00H ;CLKCON=00B --> basic frequency
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20 System Programming

To aid in software development, a number of features has been incorporated into the instruction set
of the C161RI, including constructs for modularity, loops, and context switching. In many cases
commonly used instruction sequences have been simplified while providing greater flexibility. The
following programming features help to fully utilize this instruction set.

Instructions Provided as Subsets of Instructions   

In many cases, instructions found in other microcontrollers are provided as subsets of more
powerful instructions in the C161RI. This allows the same functionality to be provided while
decreasing the hardware required and decreasing decode complexity. In order to aid assembly
programming, these instructions, familiar from other microcontrollers, can be built in macros, thus
providing the same names.

Directly Substitutable Instructions are instructions known from other microcontrollers that can be
replaced by the following instructions of the C161RI:   

Modification of System Flags is performed using bit set or bit clear instructions (BSET, BCLR). All
bit and word instructions can access the PSW register, so no instructions like CLEAR CARRY or
ENABLE INTERRUPTS are required.

External Memory Data Access does not require special instructions to load data pointers or
explicitly load and store external data. The C161RI provides a Von-Neumann memory architecture
and its on-chip hardware automatically detects accesses to internal RAM, GPRs, and SFRs.

Multiplication and Division   

Multiplication and division of words and double words is provided through multiple cycle instructions
implementing a Booth algorithm. Each instruction implicitly uses the 32-bit register MD (MDL =
lower 16 bits, MDH = upper 16 bits). The MDRIU flag (Multiply or Divide Register In Use) in register
MDC is set whenever either half of this register is written to or when a multiply/divide instruction is
started. It is cleared whenever the MDL register is read. Because an interrupt can be acknowledged
before the contents of register MD are saved, this flag is required to alert interrupt routines, which
require the use of the multiply/divide hardware, so they can preserve register MD. This register,
however, only needs to be saved when an interrupt routine requires use of the MD register and a
previous task has not saved the current result. This flag is easily tested by the Jump-on-Bit
instructions.

Substituted Instruction C161RI Instruction Function

CLR Rn AND Rn, #0H Clear register

CPLB Bit BMOVN Bit, Bit Complement bit

DEC Rn SUB Rn, #1H Decrement register

INC Rn ADD Rn, #1H Increment register

SWAPB Rn ROR Rn, #8H Swap bytes within word
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Multiplication or division is simply performed by specifying the correct (signed or unsigned) version
of the multiply or divide instruction. The result is then stored in register MD. The overflow flag (V) is
set if the result from a multiply or divide instruction is greater than 16 bits. This flag can be used to
determine whether both word halfs must be transferred from register MD. The high portion of
register MD (MDH) must be moved into the register file or memory first, in order to ensure that the
MDRIU flag reflects the correct state.

The following instruction sequence performs an unsigned 16 by 16-bit multiplication:

SAVE:
JNB MDRIU, START ;Test if MD was in use.
SCXT MDC, #0010H ;Save and clear control register,

;leaving MDRIU set
;(only required for interrupted
;multiply/divide instructions)

BSET SAVED ;Indicate the save operation
PUSH MDH ;Save previous MD contents …
PUSH MDL ;… on system stack
START:
MULU R1, R2 ;Multiply 16·16 unsigned, Sets MDRIU
JMPR cc_NV, COPYL ;Test for only 16-bit result
MOV R3, MDH ;Move high portion of MD
COPYL:
MOV R4, MDL ;Move low portion of MD, Clears MDRIU
RESTORE:
JNB SAVED, DONE ;Test if MD registers were saved
POP MDL ;Restore registers
POP MDH
POP MDC
BCLR SAVED ;Multiplication is completed,

;program continues
DONE: …

The above save sequence and the restore sequence after COPYL are only required if the current
routine could have interrupted a previous routine which contained a MUL or DIV instruction.
Register MDC is also saved because it is possible that a previous routine’s Multiply or Divide
instruction was interrupted while in progress. In this case the information about how to restart the
instruction is contained in this register. Register MDC must be cleared to be correctly initialized for
a subsequent multiplication or division. The old MDC contents must be popped from the stack
before the RETI instruction is executed.

For a division the user must first move the dividend into the MD register. If a 16/16-bit division is
specified, only the low portion of register MD must be loaded. The result is also stored into register
MD. The low portion (MDL) contains the integer result of the division, while the high portion (MDH)
contains the remainder.
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The following instruction sequence performs a 32 by 16-bit division:

MOV MDH, R1 ;Move dividend to MD register. Sets MDRIU
MOV MDL, R2 ;Move low portion to MD
DIV R3 ;Divide 32/16 signed, R3 holds divisor
JMPR cc_V, ERROR ;Test for divide overflow
MOV R3, MDH ;Move remainder to R3
MOV R4, MDL ;Move integer result to R4. Clears MDRIU

Whenever a multiply or divide instruction is interrupted while in progress, the address of the
interrupted instruction is pushed onto the stack and the MULIP flag in the PSW of the interrupting
routine is set. When the interrupt routine is exited with the RETI instruction, this bit is implicitly tested
before the old PSW is popped from the stack. If MULIP=’1’ the multiply/divide instruction is re-read
from the location popped from the stack (return address) and will be completed after the RETI
instruction has been executed.

Note: The MULIP flag is part of the context of the interrupted task. When the interrupting routine
does not return to the interrupted task (e.g. scheduler switches to another task) the MULIP
flag must be set or cleared according to the context of the task that is switched to.

BCD Calculations

No direct support for BCD calculations is provided in the C161RI. BCD calculations are performed
by converting BCD data to binary data, performing the desired calculations using standard data
types, and converting the result back to BCD data. Due to the enhanced performance of division
instructions binary data is quickly converted to BCD data through division by 10D. Conversion from
BCD data to binary data is enhanced by multiple bit shift instructions. This provides similar
performance compared to instructions directly supporting BCD data types, while no additional
hardware is required.
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20.1 Stack Operations   

The C161RI supports two types of stacks. The system stack is used implicitly by the controller and
is located in the internal RAM. The user stack provides stack access to the user in either the internal
or external memory. Both stack types grow from high memory addresses to low memory addresses.

Internal System Stack

A system stack is provided to store return vectors, segment pointers, and processor status for
procedures and interrupt routines. A system register, SP, points to the top of the stack. This pointer
is decremented when data is pushed onto the stack, and incremented when data is popped.

The internal system stack can also be used to temporarily store data or pass it between subroutines
or tasks. Instructions are provided to push or pop registers on/from the system stack. However, in
most cases the register banking scheme provides the best performance for passing data between
multiple tasks.

Note: The system stack allows the storage of words only. Bytes must either be converted to words
or the respective other byte must be disregarded.
Register SP can only be loaded with even byte addresses (The LSB of SP is always ’0’).

Detection of stack overflow/underflow is supported by two registers, STKOV (Stack Overflow
Pointer) and STKUN (Stack Underflow Pointer). Specific system traps (Stack Overflow trap, Stack
Underflow trap) will be entered whenever the SP reaches either boundary specified in these
registers.

The contents of the stack pointer are compared to the contents of the overflow register, whenever
the SP is DECREMENTED either by a CALL, PUSH or SUB instruction. An overflow trap will be
entered, when the SP value is less than the value in the stack overflow register.

The contents of the stack pointer are compared to the contents of the underflow register, whenever
the SP is INCREMENTED either by a RET, POP or ADD instruction. An underflow trap will be
entered, when the SP value is greater than the value in the stack underflow register.

Note: When a value is MOVED into the stack pointer, NO check against the overflow/underflow
registers is performed.

In many cases the user will place a software reset instruction (SRST) into the stack underflow and
overflow trap service routines. This is an easy approach, which does not require special
programming. However, this approach assumes that the defined internal stack is sufficient for the
current software and that exceeding its upper or lower boundary represents a fatal error.

It is also possible to use the stack underflow and stack overflow traps to cache portions of a larger
external stack. Only the portion of the system stack currently being used is placed into the internal
memory, thus allowing a greater portion of the internal RAM to be used for program, data or register
banking. This approach assumes no error but requires a set of control routines (see below).
Semiconductor Group 20-4 1998-05-01



System Programming
C161RI
Circular (virtual) Stack

This basic technique allows pushing until the overflow boundary of the internal stack is reached. At
this point a portion of the stacked data must be saved into external memory to create space for
further stack pushes. This is called “stack flushing”. When executing a number of return or pop
instructions, the upper boundary (since the stack empties upward to higher memory locations) is
reached. The entries that have been previously saved in external memory must now be restored.
This is called “stack filling”. Because procedure call instructions do not continue to nest infinitely and
call and return instructions alternate, flushing and filling normally occurs very infrequently. If this is
not true for a given program environment, this technique should not be used because of the
overhead of flushing and filling.

The basic mechanism is the transformation of the addresses of a virtual stack area, controlled via
registers SP, STKOV and STKUN, to a defined physical stack area within the internal RAM via
hardware. This virtual stack area covers all possible locations that SP can point to, i.e. 00’F000H

through 00’FFFEH. STKOV and STKUN accept the same 4 KByte address range.
The size of the physical stack area within the internal RAM that effectively is used for standard stack
operations is defined via bitfield STKSZ in register SYSCON (see below).  

The virtual stack addresses are transformed to physical stack addresses by concatenating the
significant bits of the stack pointer register SP (see table) with the complementary most significant
bits of the upper limit of the physical stack area (00’FBFEH). This transformation is done via
hardware (see figure below).

The reset values (STKOV=FA00H, STKUN=FC00H, SP=FC00H, STKSZ=000B) map the virtual
stack area directly to the physical stack area and allow using the internal system stack without any
changes, provided that the 256 word area is not exceeded.

<STKSZ> Stack Size 
(Words)

Internal RAM Addresses (Words)
of Physical Stack

Significant Bits of 
Stack Pointer SP

0 0 0 B 256 00’FBFEH … 00’FA00H (Default after Reset) SP.8 … SP.0

0 0 1 B 128 00’FBFEH … 00’FB00H SP.7 … SP.0

0 1 0 B 64 00’FBFEH … 00’FB80H SP.6 … SP.0

0 1 1 B 32 00’FBFEH … 00’FBC0H SP.5 … SP.0

1 0 0 B 512 00’FBFEH … 00’F800H (not for 1KByte IRAM) SP.9 … SP.0

1 0 1 B --- Reserved. Do not use this combination. ---

1 1 0 B --- Reserved. Do not use this combination. ---

1 1 1 B 1024 00’FDFEH … 00’FX00H (Note: No circular stack)
00’FX00H represents the lower IRAM limit, i.e.
1 KB: 00’FA00H, 2 KB: 00’F600H, 3 KB: 00’F200H

SP.11 … SP.0
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Figure 20-1
Physical Stack Address Generation

The following example demonstrates the circular stack mechanism which is also an effect of this
virtual stack mapping: First, register R1 is pushed onto the lowest physical stack location according
to the selected maximum stack size. With the following instruction, register R2 will be pushed onto
the highest physical stack location although the SP is decremented by 2 as for the previous push
operation.

MOV SP, #0F802H ;Set SP before last entry …
;… of physical stack of 256 words

… ;(SP)=F802H: Physical stack addr.=FA02H
PUSH R1 ;(SP)=F800H: Physical stack addr.=FA00H
PUSH R2 ;(SP)=F7FEH: Physical stack addr.=FBFEH

The effect of the address transformation is that the physical stack addresses wrap around from the
end of the defined area to its beginning. When flushing and filling the internal stack, this circular
stack mechanism only requires to move that portion of stack data which is really to be re-used (i.e.
the upper part of the defined stack area) instead of the whole stack area. Stack data that remain in
the lower part of the internal stack need not be moved by the distance of the space being flushed
or filled, as the stack pointer automatically wraps around to the beginning of the freed part of the
stack area. 

Note: This circular stack technique is applicable for stack sizes of 32 to 512 words (STKSZ = ‘000B’
to ‘100B’), it does not work with option STKSZ = ‘111B’, which uses the complete internal
RAM for system stack.
In the latter case the address transformation mechanism is deactivated.

1 1 1 1  1 0 1 1  1 1 1 1  1 1 1 0

1 1 1 1  1 0 1 1  1 0 0 0  0 0 0 0

1 1 1 1  1 0 1 1  1 0 0 0  0 0 0 0 1 1 1 1  1 0 1 0  0 0 0 0  0 0 0 0

1 1 1 1  1 0 1 1  1 1 1 1  1 1 1 0

1 1 1 1  1 0 1 1  0 1 1 1  1 1 1 0

1 1 1 1  1 0 1 1  1 1 1 1  1 1 1 0

FBFEH

FB80H

FB80H

FBFEH

FB7EH

FBFEH

FBFEH

64 words 256 words

F800H
1 1 1 1  1 0 0 0  0 0 0 0  0 0 0 0

FA00H

1 1 1 1  0 1 1 1  1 1 1 1  1 1 1 0

1 1 1 1  1 0 1 1  1 1 1 1  1 1 1 0

FBFEH

F7FEH

FBFEH

1 1 1 1  1 0 1 1  1 1 1 1  1 1 1 0

1 1 1 1  1 0 1 1  1 1 1 1  1 1 1 0

<SP>

<SP>

Phys.A.

Phys.A.

Stack Size

After PUSH After PUSH
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When a boundary is reached, the stack underflow or overflow trap is entered, where the user moves
a predetermined portion of the internal stack to or from the external stack. The amount of data
transferred is determined by the average stack space required by routines and the frequency of
calls, traps, interrupts and returns. In most cases this will be approximately one quarter to one tenth
the size of the internal stack. Once the transfer is complete, the boundary pointers are updated to
reflect the newly allocated space on the internal stack. Thus, the user is free to write code without
concern for the internal stack limits. Only the execution time required by the trap routines affects
user programs.

The following procedure initializes the controller for usage of the circular stack mechanism:

• Specify the size of the physical system stack area within the internal RAM (bitfield STKSZ in
register SYSCON).

• Define two pointers, which specify the upper and lower boundary of the external stack. These
values are then tested in the stack underflow and overflow trap routines when moving data.

• Set the stack overflow pointer (STKOV) to the limit of the defined internal stack area plus six words
(for the reserved space to store two interrupt entries).

The internal stack will now fill until the overflow pointer is reached. After entry into the overflow trap
procedure, the top of the stack will be copied to the external memory. The internal pointers will then
be modified to reflect the newly allocated space. After exiting from the trap procedure, the internal
stack will wrap around to the top of the internal stack, and continue to grow until the new value of
the stack overflow pointer is reached.

When the underflow pointer is reached while the stack is emptied the bottom of stack is reloaded
from the external memory and the internal pointers are adjusted accordingly.

Linear Stack

The C161RI also offers a linear stack option (STKSZ = ‘111B’), where the system stack may use the
complete internal RAM area. This provides a large system stack without requiring procedures to
handle data transfers for a circular stack. However, this method also leaves less RAM space for
variables or code. The RAM area that may effectively be consumed by the system stack is defined
via the STKUN and STKOV pointers. The underflow and overflow traps in this case serve for fatal
error detection only.

For the linear stack option all modifiable bits of register SP are used to access the physical stack.
Although the stack pointer may cover addresses from 00’F000H up to 00’FFFEH the (physical)
system stack must be located within the internal RAM and therefore may only use the address
range 00’F600H to 00’FDFEH. It is the user’s responsibility to restrict the system stack to the internal
RAM range.

Note: Avoid stack accesses below the IRAM area (ESFR space and reserved area) and within
address range 00’FE00H and 00’FFFEH (SFR space).
Otherwise unpredictable results will occur.
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User Stacks

User stacks provide the ability to create task specific data stacks and to off-load data from the
system stack. The user may push both bytes and words onto a user stack, but is responsible for
using the appropriate instructions when popping data from the specific user stack. No hardware
detection of overflow or underflow of a user stack is provided. The following addressing modes
allow implementation of user stacks:

[– Rw], Rb or [– Rw], Rw : Pre-decrement Indirect Addressing.
Used to push one byte or word onto a user stack. This mode is only available for MOV instructions
and can specify any GPR as the user stack pointer.

Rb, [Rw i+] or Rw, [Rw i+]: Post-increment Index Register Indirect Addressing.
Used to pop one byte or word from a user stack. This mode is available to most instructions, but only
GPRs R0-R3 can be specified as the user stack pointer.

Rb, [Rw+] or Rw, [Rw+] : Post-increment Indirect Addressing.
Used to pop one byte or word from a user stack. This mode is only available for MOV instructions
and can specify any GPR as the user stack pointer.

20.2 Register Banking

Register banking provides the user with an extremely fast method to switch user context. A single
machine cycle instruction saves the old bank and enters a new register bank. Each register bank
may assign up to 16 registers. Each register bank should be allocated during coding based on the
needs of each task. Once the internal memory has been partitioned into a register bank space,
internal stack space and a global internal memory area, each bank pointer is then assigned. Thus,
upon entry into a new task, the appropriate bank pointer is used as the operand for the SCXT
(switch context) instruction. Upon exit from a task a simple POP instruction to the context pointer
(CP) restores the previous task’s register bank.

20.3 Procedure Call Entry and Exit

To support modular programming a procedure mechanism is provided to allow coding of frequently
used portions of code into subroutines. The CALL and RET instructions store and restore the value
of the instruction pointer (IP) on the system stack before and after a subroutine is executed.

Procedures may be called conditionally with instructions CALLA or CALLI, or be called
unconditionally using instructions CALLR or CALLS.

Note: Any data pushed onto the system stack during execution of the subroutine must be popped
before the RET instruction is executed.
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Passing Parameters on the System Stack

Parameters may be passed via the system stack through PUSH instructions before the subroutine
is called, and POP instructions during execution of the subroutine. Base plus offset indirect
addressing also permits access to parameters without popping these parameters from the stack
during execution of the subroutine. Indirect addressing provides a mechanism of accessing data
referenced by data pointers, which are passed to the subroutine.

In addition, two instructions have been implemented to allow one parameter to be passed on the
system stack without additional software overhead.

The PCALL (push and call) instruction first pushes the ’reg’ operand and the IP contents onto the
system stack and then passes control to the subroutine specified by the ’caddr’ operand.

When exiting from the subroutine, the RETP (return and pop) instruction first pops the IP and then
the ’reg’ operand from the system stack and returns to the calling program.

Cross Segment Subroutine Calls   

Calls to subroutines in different segments require the use of the CALLS (call inter-segment
subroutine) instruction. This instruction preserves both the CSP (code segment pointer) and IP on
the system stack.

Upon return from the subroutine, a RETS (return from inter-segment subroutine) instruction must be
used to restore both the CSP and IP. This ensures that the next instruction after the CALLS
instruction is fetched from the correct segment.

Note:  It is possible to use CALLS within the same segment, but still two words of the stack are
used to store both the IP and CSP.

Providing Local Registers for Subroutines

For subroutines which require local storage, the following methods are provided:

Alternate Bank of Registers: Upon entry into a subroutine, it is possible to specify a new set of
local registers by executing the SCXT (switch context) instruction. This mechanism does not
provide a method to recursively call a subroutine.

Saving and Restoring of Registers: To provide local registers, the contents of the registers which
are required for use by the subroutine can be pushed onto the stack and the previous values be
popped before returning to the calling routine. This is the most common technique used today and
it does provide a mechanism to support recursive procedures. This method, however, requires two
machine cycles per register stored on the system stack (one cycle to PUSH the register, and one to
POP the register).

Use of the System Stack for Local Registers: It is possible to use the SP and CP to set up local
subroutine register frames. This enables subroutines to dynamically allocate local variables as
needed within two machine cycles. A local frame is allocated by simply subtracting the number of
required local registers from the SP, and then moving the value of the new SP to the CP.
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This operation is supported through the SCXT (switch context) instruction with the addressing mode
’reg, mem’. Using this instruction saves the old contents of the CP on the system stack and moves
the value of the SP into CP (see example below). Each local register is then accessed as if it was
a normal register. Upon exit from the subroutine, first the old CP must be restored by popping it from
the stack and then the number of used local registers must be added to the SP to restore the
allocated local space back to the system stack.

Note: The system stack is growing downwards, while the register bank is growing upwards.

   

Figure 20-2
Local Registers

The software to provide the local register bank for the example above is very compact:

After entering the subroutine:

SUB SP, #10D ;Free 5 words in the current system stack
SCXT CP, SP ;Set the new register bank pointer

Before exiting the subroutine:

POP CP ;Restore the old register bank
ADD SP, #10D ;Release the 5 words …

;… of the current system stack

Old 
Stack 
Area

Newly
Allocated 
Register

Bank

R4
R3
R2
R1
R0

Old CP Contents

Old SP

New SP
New CP

New 
Stack 
Area
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20.4 Table Searching

A number of features have been included to decrease the execution time required to search tables.
First, branch delays are eliminated by the branch target cache after the first iteration of the loop.
Second, in non-sequentially searched tables, the enhanced performance of the ALU allows more
complicated hash algorithms to be processed to obtain better table distribution. For sequentially
searched tables, the auto-increment indirect addressing mode and the E (end of table) flag stored
in the PSW decrease the number of overhead instructions executed in the loop.

The two examples below illustrate searching ordered tables and non-ordered tables, respectively:

MOV R0, #BASE ;Move table base into R0
LOOP:
CMP R1, [R0+] ;Compare target to table entry
JMPR cc_SGT, LOOP ;Test whether target has not been found

Note: The last entry in the table must be greater than the largest possible target.

MOV R0, #BASE ;Move table base into R0
LOOP:
CMP R1, [R0+] ;Compare target to table entry
JMPR cc_NET, LOOP ;Test whether target is not found AND..

;..the end of table has not been reached.

Note: The last entry in the table must be equal to the lowest signed integer (8000H).

20.5 Peripheral Control and Interface

All communication between peripherals and the CPU is performed either by PEC transfers to and
from internal memory, or by explicitly addressing the SFRs associated with the specific peripherals.
After resetting the C161RI all peripherals (except the watchdog timer) are disabled and initialized to
default values. A desired configuration of a specific peripheral is programmed using MOV
instructions of either constants or memory values to specific SFRs. Specific control flags may also
be altered via bit instructions.

Once in operation, the peripheral operates autonomously until an end condition is reached at which
time it requests a PEC transfer or requests CPU servicing through an interrupt routine. Information
may also be polled from peripherals through read accesses to SFRs or bit operations including
branch tests on specific control bits in SFRs. To ensure proper allocation of peripherals among
multiple tasks, a portion of the internal memory has been made bit addressable to allow user
semaphores. Instructions have also been provided to lock out tasks via software by setting or
clearing user specific bits and conditionally branching based on these specific bits.

It is recommended that bit fields in control SFRs are updated using the BFLDH and BFLDL
instructions or a MOV instruction to avoid undesired intermediate modes of operation which can
occur, when BCLR/BSET or AND/OR instruction sequences are used.
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20.6 Floating Point Support

All floating point operations are performed using software. Standard multiple precision instructions
are used to perform calculations on data types that exceed the size of the ALU. Multiple bit rotate
and logic instructions allow easy masking and extracting of portions of floating point numbers.

To decrease the time required to perform floating point operations, two hardware features have
been implemented in the CPU core. First, the PRIOR instruction aids in normalizing floating point
numbers by indicating the position of the first set bit in a GPR. This result can the be used to rotate
the floating point result accordingly. The second feature aids in properly rounding the result of
normalized floating point numbers through the overflow (V) flag in the PSW. This flag is set when a
one is shifted out of the carry bit during shift right operations. The overflow flag and the carry flag are
then used to round the floating point result based on the desired rounding algorithm.

20.7 Trap/Interrupt Entry and Exit

Interrupt routines are entered when a requesting interrupt has a priority higher than the current CPU
priority level. Traps are entered regardless of the current CPU priority. When either a trap or
interrupt routine is entered, the state of the machine is preserved on the system stack and a branch
to the appropriate trap/interrupt vector is made.

All trap and interrupt routines require the use of the RETI (return from interrupt) instruction to exit
from the called routine. This instruction restores the system state from the system stack and then
branches back to the location where the trap or interrupt occurred.

20.8 Unseparable Instruction Sequences   

The instructions of the C161RI are very efficient (most instructions execute in one machine cycle)
and even the multiplication and division are interruptable in order to minimize the response latency
to interrupt requests (internal and external). In many microcontroller applications this is vital.

Some special occasions, however, require certain code sequences (e.g. semaphore handling) to be
uninterruptable to function properly. This can be provided by inhibiting interrupts during the
respective code sequence by disabling and enabling them before and after the sequence. The
necessary overhead may be reduced by means of the ATOMIC instruction which allows locking
1 … 4 instructions to an unseparable code sequence, during which the interrupt system (standard
interrupts and PEC requests) and Class A Traps (NMI, stack overflow/underflow) are disabled. A
Class B Trap (illegal opcode, illegal bus access, etc.), however, will interrupt the atomic sequence,
since it indicates a severe hardware problem. The interrupt inhibit caused by an ATOMIC instruction
gets active immediately, i.e. no other instruction will enter the pipeline except the one that follows
the ATOMIC instruction, and no interrupt request will be serviced in between. All instructions
requiring multiple cycles or hold states are regarded as one instruction in this sense (e.g. MUL is
one instruction). Any instruction type can be used within an unseparable code sequence.

ATOMIC #3 ;The next 3 instr. are locked (No NOP requ.)
MOV R0, #1234H ;Instr. 1 (no other instr. enters pipeline!)
MOV R1, #5678H ;Instr. 2
MUL R0, R1 ;Instr. 3: MUL regarded as one instruction
MOV R2, MDL ;This instruction is out of the scope …

;… of the ATOMIC instruction sequence
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20.9 Overriding the DPP Addressing Mechanism   

The standard mechanism to access data locations uses one of the four data page pointers (DPPx),
which selects a 16 KByte data page, and a 14-bit offset within this data page. The four DPPs allow
immediate access to up to 64 KByte of data. In applications with big data arrays, especially in HLL
applications using large memory models, this may require frequent reloading of the DPPs, even for
single accesses.

The EXTP (extend page) instruction allows switching to an arbitrary data page for 1 … 4
instructions without having to change the current DPPs.

EXTP R15, #1 ;The override page number is stored in R15
MOV R0, [R14] ;The (14-bit) page offset is stored in R14
MOV R1, [R13] ;This instruction uses the std. DPP scheme!

The EXTS (extend segment) instruction allows switching to a 64 KByte segment oriented data
access scheme for 1 … 4 instructions without having to change the current DPPs. In this case all 16
bits of the operand address are used as segment offset, with the segment taken from the EXTS
instruction. This greatly simplifies address calculation with continuous data like huge arrays in “C”.

EXTS #15, #1 ;The override seg. is 15 (0F’0000H..0F’FFFFH)
MOV R0, [R14] ;The (16-bit) segment offset is stored in R14
MOV R1, [R13] ;This instruction uses the std. DPP scheme!

Note: Instructions EXTP and EXTS inhibit interrupts the same way as ATOMIC.

Short Addressing in the Extended SFR (ESFR) Space

The short addressing modes of the C161RI (REG or BITOFF) implicitly access the SFR space. The
additional ESFR space would have to be accessed via long addressing modes (MEM or [Rw]). The
EXTR (extend register) instruction redirects accesses in short addressing modes to the ESFR
space for 1 … 4 instructions, so the additional registers can be accessed this way, too.

The EXTPR and EXTSR instructions combine the DPP override mechanism with the redirection to
the ESFR space using a single instruction.

Note: Instructions EXTR, EXTPR and EXTSR inhibit interrupts the same way as ATOMIC.
The switching to the ESFR area and data page overriding is checked by the development
tools or handled automatically.

Nested Locked Sequences

Each of the described extension instruction and the ATOMIC instruction starts an internal
“extension counter” counting the effected instructions. When another extension or ATOMIC
instruction is contained in the current locked sequence this counter is restarted with the value of the
new instruction. This allows the construction of locked sequences longer than 4 instructions.

Note: • Interrupt latencies may be increased when using locked code sequences.
• PEC requests are not serviced during idle mode, if the IDLE instruction is part of a locked
sequence.
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20.10 Handling the Internal Code Memory   

The Mask-ROM/OTP/Flash versions of the C161RI provide on-chip code memory that may store
code as well as data. The lower 32 KByte of this code memory are referred to as the „internal ROM
area“. Access to this internal ROM area is controlled during the reset configuration and via software.
The ROM area may be mapped to segment 0, to segment 1 or the code memory may be disabled
at all.

Note: The internal ROM area always occupies an address area of 32 KByte, even if the
implemented mask ROM/OTP/Flash memory is smaller than that (e.g. 8 KByte).
Of course the total implemented memory may exceed 32 KBytes.

Code Memory Configuration during Reset

The control input pin EA (External Access) enables the user to define the address area from which
the first instructions after reset are fetched. When EA is low (‘0’) during reset, the internal code
memory is disabled and the first instructions are fetched from external memory. When EA is high
(‘1’) during reset, the internal code memory is globally enabled and the first instructions are fetched
from the internal memory.

Note: Be sure not to select internal memory access after reset on ROMless devices.

Mapping the Internal ROM Area

After reset the internal ROM area is mapped into segment 0, the “system segment”
(00’0000H … 00’7FFFH) as a default. This is necessary to allow the first instructions to be fetched
from locations 00’0000H ff. The ROM area may be mapped to segment 1 (01’0000H … 01’7FFFH) by
setting bit ROMS1 in register SYSCON. The internal ROM area may now be accessed through the
lower half of segment 1, while accesses to segment 0 will now be made to external memory. This
adds flexibility to the system software. The interrupt/trap vector table, which uses locations
00’0000H through 00’01FFH, is now part of the external memory and may therefore be modified, i.e.
the system software may now change interrupt/trap handlers according to the current condition of
the system. The internal code memory can still be used for fixed software routines like IO drivers,
math libraries, application specific invariant routines, tables, etc. This combines the advantage of an
integrated non-volatile memory with the advantage of a flexible, adaptable software system.

Enabling and Disabling the Internal Code Memory After Reset

If the internal code memory does not contain an appropriate startup code, the system may be
booted from external memory, while the internal memory is enabled afterwards to provide access to
library routines, tables, etc.

If the internal code memory only contains the startup code and/or test software, the system may be
booted from internal memory, which may then be disabled, after the software has switched to
executing from (e.g.) external memory, in order to free the address space occupied by the internal
code memory, which is now unnecessary.
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20.11 Pits, Traps and Mines

Although handling the internal code memory provides powerful means to enhance the overall
performance and flexibility of a system, extreme care must be taken in order to avoid a system
crash. Instruction memory is the most crucial resource for the C161RI and it must be made sure that
it never runs out of it. The following precautions help to take advantage of the methods mentioned
above without jeopardizing system security.

Internal code memory access after reset: When the first instructions are to be fetched from
internal memory (EA=‘1’), the device must contain code memory, and this must contain a valid reset
vector and valid code at its destination.

Mapping the internal ROM area to segment 1: Due to instruction pipelining, any new ROM
mapping will at the earliest become valid for the second instruction after the instruction which has
changed the ROM mapping. To enable accesses to the ROM area after mapping a branch to the
newly selected ROM area (JMPS) and reloading of all data page pointers is required.
This also applies to re-mapping the internal ROM area to segment 0.

Enabling the internal code memory after reset: When enabling the internal code memory after
having booted the system from external memory, note that the C161RI will then access the internal
memory using the current segment offset, rather than accessing external memory.

Disabling the internal code memory after reset: When disabling the internal code memory after
having booted the system from there, note that the C161RI will not access external memory before
a jump to segment 0 (in this case) is executed.

General Rules

When mapping the code memory no instruction or data accesses should be made to the internal
memory, otherwise unpredictable results may occur.

To avoid these problems, the instructions that configure the internal code memory should be
executed from external memory or from the on-chip RAM.

Whenever the internal code memory is disabled, enabled or remapped the DPPs must be explicitly
(re)loaded to enable correct data accesses to the internal and/or external memory.
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21 The Register Set   

This section summarizes all registers, which are implemented in the C161RI and explains the
description format which is used in the chapters describing the function and layout of the SFRs.
For easy reference the registers are ordered according to two different keys (except for GPRs):

• Ordered by address, to check which register a given address references,

• Ordered by register name, to find the location of a specific register.

21.1 Register Description Format

In the respective chapters the function and the layout of the SFRs is described in a specific format
which provides a number of details about the described special function register. The example
below shows how to interpret these details.

A word register looks like this:

REG_NAME (A16H / A8H)   E/SFR Reset Value: * * * *H  

A byte register looks like this:

REG_NAME (A16H / A8H)   E/SFR Reset Value: - - * *H 

Elements:

REG_NAME Name of this register
A16 / A8 Long 16-bit address / Short 8-bit address
SFR/ESFR/XRegRegister space (SFR, ESFR or External/XBUS Register)
(* *) * * Register contents after reset

0/1: defined value, ’X’: undefined, ’U’: unchanged (undefined (’X’) after power up)
Bits that are set/cleared by hardware are marked with a shaded access box

Bit Function

bit(field)name Explanation of bit(field)name
Description of the functions controlled by this bit(field).

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- w rw r rw rw- - - -

res.res.res.res.res.
write
only

read
only bitfield bitfield

hw
bit

std
bit

hw
bit

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

bitfieldbitfield
std
bit

hw
bit

hwbit
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21.2 CPU General Purpose Registers (GPRs)  

The GPRs form the register bank that the CPU works with. This register bank may be located
anywhere within the internal RAM via the Context Pointer (CP). Due to the addressing mechanism,
GPR banks can only reside within the internal RAM. All GPRs are bit-addressable.

   

Name Physical
Address

8-Bit
Address

Description Reset
Value

R0 (CP) + 0 F0H CPU General Purpose (Word) Register R0 UUUUH

R1 (CP) + 2 F1H CPU General Purpose (Word) Register R1 UUUUH

R2 (CP) + 4 F2H CPU General Purpose (Word) Register R2 UUUUH

R3 (CP) + 6 F3H CPU General Purpose (Word) Register R3 UUUUH

R4 (CP) + 8 F4H CPU General Purpose (Word) Register R4 UUUUH

R5 (CP) + 10 F5H CPU General Purpose (Word) Register R5 UUUUH

R6 (CP) + 12 F6H CPU General Purpose (Word) Register R6 UUUUH

R7 (CP) + 14 F7H CPU General Purpose (Word) Register R7 UUUUH

R8 (CP) + 16 F8H CPU General Purpose (Word) Register R8 UUUUH

R9 (CP) + 18 F9H CPU General Purpose (Word) Register R9 UUUUH

R10 (CP) + 20 FAH CPU General Purpose (Word) Register R10 UUUUH

R11 (CP) + 22 FBH CPU General Purpose (Word) Register R11 UUUUH

R12 (CP) + 24 FCH CPU General Purpose (Word) Register R12 UUUUH

R13 (CP) + 26 FDH CPU General Purpose (Word) Register R13 UUUUH

R14 (CP) + 28 FEH CPU General Purpose (Word) Register R14 UUUUH

R15 (CP) + 30 FFH CPU General Purpose (Word) Register R15 UUUUH
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The first 8 GPRs (R7±R0) may also be accessed bytewise. Other than with SFRs, writing to a GPR
byte does not affect the other byte of the respective GPR.
The respective halves of the byte-accessible registers receive special names:

   

Name Physical
Address

8-Bit
Address

Description Reset
Value

RL0 (CP) + 0 F0H CPU General Purpose (Byte) Register RL0 UUH

RH0 (CP) + 1 F1H CPU General Purpose (Byte) Register RH0 UUH

RL1 (CP) + 2 F2H CPU General Purpose (Byte) Register RL1 UUH

RH1 (CP) + 3 F3H CPU General Purpose (Byte) Register RH1 UUH

RL2 (CP) + 4 F4H CPU General Purpose (Byte) Register RL2 UUH

RH2 (CP) + 5 F5H CPU General Purpose (Byte) Register RH2 UUH

RL3 (CP) + 6 F6H CPU General Purpose (Byte) Register RL3 UUH

RH3 (CP) + 7 F7H CPU General Purpose (Byte) Register RH3 UUH

RL4 (CP) + 8 F8H CPU General Purpose (Byte) Register RL4 UUH

RH4 (CP) + 9 F9H CPU General Purpose (Byte) Register RH4 UUH

RL5 (CP) + 10 FAH CPU General Purpose (Byte) Register RL5 UUH

RH5 (CP) + 11 FBH CPU General Purpose (Byte) Register RH5 UUH

RL6 (CP) + 12 FCH CPU General Purpose (Byte) Register RL6 UUH

RH6 (CP) + 13 FDH CPU General Purpose (Byte) Register RH6 UUH

RL7 (CP) + 14 FEH CPU General Purpose (Byte) Register RL7 UUH

RH7 (CP) + 14 FFH CPU General Purpose (Byte) Register RH7 UUH
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21.3 Special Function Registers ordered by Name   

The following table lists all SFRs which are implemented in the C161RI in alphabetical order.
Bit-addressable SFRs are marked with the letter “b” in column “Name”.
SFRs within the Extended SFR-Space (ESFRs) are marked with the letter “E” in column “Physical
Address”. Registers within on-chip X-Peripherals are marked with the letter “X” in column “Physical
Address”.

   

Name Physical
Address

8-Bit
Address

Description Reset
Value

ADCIC b FF98H CCH A/D Converter End of Conversion Interrupt 
Control Register

0000H

ADCON b FFA0H D0H A/D Converter Control Register 0000H

ADDAT FEA0H 50H A/D Converter Result Register 0000H

ADDRSEL1 FE18H 0CH Address Select Register 1 0000H

ADDRSEL2 FE1AH 0DH Address Select Register 2 0000H

ADDRSEL3 FE1CH 0EH Address Select Register 3 0000H

ADDRSEL4 FE1EH 0FH Address Select Register 4 0000H

ADEIC b FF9AH CDH A/D Converter Overrun Error Interrupt Control 
Register

0000H

BUSCON0 b FF0CH 86H Bus Configuration Register 0 0000H

BUSCON1 b FF14H 8AH Bus Configuration Register 1 0000H

BUSCON2 b FF16H 8BH Bus Configuration Register 2 0000H

BUSCON3 b FF18H 8CH Bus Configuration Register 3 0000H

BUSCON4 b FF1AH 8DH Bus Configuration Register 4 0000H

CAPREL FE4AH 25H GPT2 Capture/Reload Register 0000H

CC8IC b FF88H C4H External Interrupt 0 Control Register 0000H

CC9IC b FF8AH C5H External Interrupt 1 Control Register 0000H

CC10IC b FF8CH C6H External Interrupt 2 Control Register 0000H

CC11IC b FF8EH C7H External Interrupt 3 Control Register 0000H

CC12IC b FF90H C8H External Interrupt 4 Control Register 0000H

CC13IC b FF92H C9H External Interrupt 5 Control Register 0000H

CC14IC b FF94H CAH External Interrupt 6 Control Register 0000H

CC15IC b FF96H CBH External Interrupt 7 Control Register 0000H

CP FE10H 08H CPU Context Pointer Register FC00H

CRIC b FF6AH B5H GPT2 CAPREL Interrupt Control Register 0000H

CSP FE08H 04H CPU Code Segment Pointer Register
(8 bits, not directly writeable)

0000H
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DP0L b F100H E 80H P0L Direction Control Register 00H

DP0H b F102H E 81H P0H Direction Control Register 00H

DP1L b F104H E 82H P1L Direction Control Register 00H

DP1H b F106H E 83H P1H Direction Control Register 00H

DP2 b FFC2H E1H Port 2 Direction Control Register 0000H

DP3 b FFC6H E3H Port 3 Direction Control Register 0000H

DP4 b FFCAH E5H Port 4 Direction Control Register 00H

DP6 b FFCEH E7H Port 6 Direction Control Register 00H

DPP0 FE00H 00H CPU Data Page Pointer 0 Register (10 bits) 0000H

DPP1 FE02H 01H CPU Data Page Pointer 1 Register (10 bits) 0001H

DPP2 FE04H 02H CPU Data Page Pointer 2 Register (10 bits) 0002H

DPP3 FE06H 03H CPU Data Page Pointer 3 Register (10 bits) 0003H

EXICON b F1C0H E E0H External Interrupt Control Register 0000H

ICADR ED06H X --- I2C Address Register 0XXXH

ICCFG ED00H X --- I2C Configuration Register XX00H

ICCON ED02H X --- I2C Control Register 0000H

ICRTB ED08H X --- I2C Receive/Transmit Buffer XXH

ICST ED04H X --- I2C Status Register 0000H

IDCHIP F07CH E 3EH Identifier 09XXH

IDMANUF F07EH E 3FH Identifier 1820H

IDMEM F07AH E 3DH Identifier 0000H

IDPROG F078H E 3CH Identifier 0000H

ISNC b F1DEH E EFH Interrupt Subnode Control Register 0000H

MDC b FF0EH 87H CPU Multiply Divide Control Register 0000H

MDH FE0CH 06H CPU Multiply Divide Register – High Word 0000H

MDL FE0EH 07H CPU Multiply Divide Register – Low Word 0000H

ODP2 b F1C2H E E1H Port 2 Open Drain Control Register 0000H

ODP3 b F1C6H E E3H Port 3 Open Drain Control Register 0000H

ODP6 b F1CEH E E7H Port 6 Open Drain Control Register 00H

ONES b FF1EH 8FH Constant Value 1’s Register (read only) FFFFH

P0L b FF00H 80H Port 0 Low Register (Lower half of PORT0) 00H

P0H b FF02H 81H Port 0 High Register (Upper half of PORT0) 00H

P1L b FF04H 82H Port 1 Low Register (Lower half of PORT1) 00H

Name Physical
Address

8-Bit
Address

Description Reset
Value
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P1H b FF06H 83H Port 1 High Register (Upper half of PORT1) 00H

P2 b FFC0H E0H Port 2 Register 0000H

P3 b FFC4H E2H Port 3 Register 0000H

P4 b FFC8H E4H Port 4 Register (7 bits) 00H

P5 b FFA2H D1H Port 5 Register (read only) XXXXH

P5DIDIS b FFA4H D2H Port 5 Digital Input Disable Register 0000H

P6 b FFCCH E6H Port 6 Register (8 bits) 00H

PECC0 FEC0H 60H PEC Channel 0 Control Register 0000H

PECC1 FEC2H 61H PEC Channel 1 Control Register 0000H

PECC2 FEC4H 62H PEC Channel 2 Control Register 0000H

PECC3 FEC6H 63H PEC Channel 3 Control Register 0000H

PECC4 FEC8H 64H PEC Channel 4 Control Register 0000H

PECC5 FECAH 65H PEC Channel 5 Control Register 0000H

PECC6 FECCH 66H PEC Channel 6 Control Register 0000H

PECC7 FECEH 67H PEC Channel 7 Control Register 0000H

PICON F1C4H E E2H Port Input Threshold Control Register 0000H

PSW b FF10H 88H CPU Program Status Word 0000H

RP0H b F108H E 84H System Startup Configuration Register (Rd. only) XXH

RTCH F0D6H E 6BH RTC High Register no

RTCL F0D4H E 6AH RTC Low Register no

S0BG FEB4H 5AH Serial Channel 0 Baud Rate Generator Reload 
Register

0000H

S0CON b FFB0H D8H Serial Channel 0 Control Register 0000H

S0EIC b FF70H B8H Serial Channel 0 Error Interrupt Control Register 0000H

S0RBUF FEB2H 59H Serial Channel 0 Receive Buffer Register
(read only)

XXXXH

S0RIC b FF6EH B7H Serial Channel 0 Receive Interrupt Control 
Register

0000H

S0TBIC b F19CH E CEH Serial Channel 0 Transmit Buffer Interrupt Control 
Register

0000H

S0TBUF FEB0H 58H Serial Channel 0 Transmit Buffer Register 0000H

S0TIC b FF6CH B6H Serial Channel 0 Transmit Interrupt Control 
Register

0000H

SP FE12H 09H CPU System Stack Pointer Register FC00H

Name Physical
Address

8-Bit
Address

Description Reset
Value
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SSCBR F0B4H E 5AH SSC Baudrate Register 0000H

SSCCON b FFB2H D9H SSC Control Register 0000H

SSCEIC b FF76H BBH SSC Error Interrupt Control Register 0000H

SSCRB F0B2H E 59H SSC Receive Buffer (read only) XXXXH

SSCRIC b FF74H BAH SSC Receive Interrupt Control Register 0000H

SSCTB F0B0H E 58H SSC Transmit Buffer (write only) 0000H

SSCTIC b FF72H B9H SSC Transmit Interrupt Control Register 0000H

STKOV FE14H 0AH CPU Stack Overflow Pointer Register FA00H

STKUN FE16H 0BH CPU Stack Underflow Pointer Register FC00H

SYSCON b FF12H 89H CPU System Configuration Register 0XX0H
1)

SYSCON2 b F1D0H E8H CPU System Configuration Register 2 0000H

SYSCON3 b F1D4H EAH CPU System Configuration Register 3 0000H

T14 F0D2H E 69H RTC Timer 14 Register no

T14REL F0D0H E 68H RTC Timer 14 Reload Register no

T2 FE40H 20H GPT1 Timer 2 Register 0000H

T2CON b FF40H A0H GPT1 Timer 2 Control Register 0000H

T2IC b FF60H B0H GPT1 Timer 2  Interrupt Control Register 0000H

T3 FE42H 21H GPT1 Timer 3 Register 0000H

T3CON b FF42H A1H GPT1 Timer 3 Control Register 0000H

T3IC b FF62H B1H GPT1 Timer 3 Interrupt Control Register 0000H

T4 FE44H 22H GPT1 Timer 4 Register 0000H

T4CON b FF44H A2H GPT1 Timer 4 Control Register 0000H

T4IC b FF64H B2H GPT1 Timer 4 Interrupt Control Register 0000H

T5 FE46H 23H GPT2 Timer 5 Register 0000H

T5CON b FF46H A3H GPT2 Timer 5 Control Register 0000H

T5IC b FF66H B3H GPT2 Timer 5 Interrupt Control Register 0000H

T6 FE48H 24H GPT2 Timer 6 Register 0000H

T6CON b FF48H A4H GPT2 Timer 6 Control Register 0000H

T6IC b FF68H B4H GPT2 Timer 6 Interrupt Control Register 0000H

TFR b FFACH D6H Trap Flag Register 0000H

WDT FEAEH 57H Watchdog Timer Register (read only) 0000H

WDTCON b FFAEH D7H Watchdog Timer Control Register 00XXH
2)

XP0IC b F186H E C3H I2C Data Interrupt Control Register 0000H

Name Physical
Address

8-Bit
Address

Description Reset
Value
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1) The system configuration is selected during reset.
2) The reset value depends on the indicated reset source.

XP1IC b F18EH E C7H I2C Protocol Interrupt Control Register 0000H

XP2IC b F196H E CBH X-Peripheral 2 Interrupt Control Register 0000H

XP3IC b F19EH E CFH RTC Interrupt Control Register 0000H

ZEROS b FF1CH 8EH Constant Value 0’s Register (read only) 0000H

Name Physical
Address

8-Bit
Address

Description Reset
Value
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21.4 Registers ordered by Address   

The following table lists all SFRs which are implemented in the C161RI ordered by their physical
address. Bit-addressable SFRs are marked with the letter “b” in column “Name”.
SFRs within the Extended SFR-Space (ESFRs) are marked with the letter “E” in column “Physical
Address”. Registers within on-chip X-Peripherals are marked with the letter “X” in column “Physical
Address”.

   

Name Physical
Address

8-Bit
Address

Description Reset
Value

ICCFG ED00H X --- I2C Configuration Register XXH

ICCON ED02H X --- I2C Control Register UUUUH

ICST ED04H X --- I2C Status Register UUUUH

ICADR ED06H X --- I2C Address Register XX01H

ICRTB ED08H X --- I2C Receive/Transmit Buffer UFUUH

IDPROG F078H E 3CH Identifier 0000H

IDMEM F07AH E 3DH Identifier 0000H

IDCHIP F07CH E 3EH Identifier 09XXH

IDMANUF F07EH E 3FH Identifier 1820H

SSCTB F0B0H E 58H SSC Transmit Buffer (write only) 0000H

SSCRB F0B2H E 59H SSC Receive Buffer (read only) XXXXH

SSCBR F0B4H E 5AH SSC Baudrate Register 0000H

T14REL F0D0H E 68H RTC Timer 14 Reload Register XXXXH

T14 F0D2H E 69H RTC Timer 14 Register XXXXH

RTCL F0D4H E 6AH RTC Low Register XXXXH

RTCH F0D6H E 6BH RTC High Register XXXXH

DP0L b F100H E 80H P0L Direction Control Register 00H

DP0H b F102H E 81H P0H Direction Control Register 00H

DP1L b F104H E 82H P1L Direction Control Register 00H

DP1H b F106H E 83H P1H Direction Control Register 00H

RP0H b F108H E 84H System Startup Configuration Register (Rd. only) XXH

XP0IC b F186H E C3H X-Peripheral 0 Interrupt Control Register 0000H

XP1IC b F18EH E C7H I2C Protocol Interrupt Control Register 0000H

XP2IC b F196H E CBH X-Peripheral 2 Interrupt Control Register 0000H

S0TBIC b F19CH E CEH Serial Channel 0 Transmit Buffer Interrupt Control 
Register

0000H

XP3IC b F19EH E CFH X-Peripheral 3 Interrupt Control Register 0000H
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EXICON b F1C0H E E0H External Interrupt Control Register 0000H

ODP2 b F1C2H E E1H Port 2 Open Drain Control Register 0000H

PICON F1C4H E E2H Port Input Threshold Control Register 0000H

ODP3 b F1C6H E E3H Port 3 Open Drain Control Register 0000H

ODP6 b F1CEH E E7H Port 6 Open Drain Control Register 00H

SYSCON2 b F1D0H E E8H CPU System Configuration Register 2 0000H

SYSCON3 b F1D4H E EAH CPU System Configuration Register 3 0000H

ISNC b F1DEH E EFH Interrupt Subnode Control Register 0000H

DPP0 FE00H 00H CPU Data Page Pointer 0 Register (10 bits) 0000H

DPP1 FE02H 01H CPU Data Page Pointer 1 Register (10 bits) 0001H

DPP2 FE04H 02H CPU Data Page Pointer 2 Register (10 bits) 0002H

DPP3 FE06H 03H CPU Data Page Pointer 3 Register (10 bits) 0003H

CSP FE08H 04H CPU Code Segment Pointer Register
(8 bits, not directly writeable)

0000H

MDH FE0CH 06H CPU Multiply Divide Register – High Word 0000H

MDL FE0EH 07H CPU Multiply Divide Register – Low Word 0000H

CP FE10H 08H CPU Context Pointer Register FC00H

SP FE12H 09H CPU System Stack Pointer Register FC00H

STKOV FE14H 0AH CPU Stack Overflow Pointer Register FA00H

STKUN FE16H 0BH CPU Stack Underflow Pointer Register FC00H

ADDRSEL1 FE18H 0CH Address Select Register 1 0000H

ADDRSEL2 FE1AH 0DH Address Select Register 2 0000H

ADDRSEL3 FE1CH 0EH Address Select Register 3 0000H

ADDRSEL4 FE1EH 0FH Address Select Register 4 0000H

T2 FE40H 20H GPT1 Timer 2 Register 0000H

T3 FE42H 21H GPT1 Timer 3 Register 0000H

T4 FE44H 22H GPT1 Timer 4 Register 0000H

T5 FE46H 23H GPT2 Timer 5 Register 0000H

T6 FE48H 24H GPT2 Timer 6 Register 0000H

CAPREL FE4AH 25H GPT2 Capture/Reload Register 0000H

ADDAT FEA0H 50H A/D Converter Result Register 0000H

WDT FEAEH 57H Watchdog Timer Register (read only) 0000H

S0TBUF FEB0H 58H Serial Channel 0 Transmit Buffer Register 0000H

Name Physical
Address

8-Bit
Address

Description Reset
Value
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S0RBUF FEB2H 59H Serial Channel 0 Receive Buffer Register
(read only)

XXXXH

S0BG FEB4H 5AH Serial Channel 0 Baud Rate Generator Reload 
Register

0000H

PECC0 FEC0H 60H PEC Channel 0 Control Register 0000H

PECC1 FEC2H 61H PEC Channel 1 Control Register 0000H

PECC2 FEC4H 62H PEC Channel 2 Control Register 0000H

PECC3 FEC6H 63H PEC Channel 3 Control Register 0000H

PECC4 FEC8H 64H PEC Channel 4 Control Register 0000H

PECC5 FECAH 65H PEC Channel 5 Control Register 0000H

PECC6 FECCH 66H PEC Channel 6 Control Register 0000H

PECC7 FECEH 67H PEC Channel 7 Control Register 0000H

P0L b FF00H 80H Port 0 Low Register (Lower half of PORT0) 00H

P0H b FF02H 81H Port 0 High Register (Upper half of PORT0) 00H

P1L b FF04H 82H Port 1 Low Register (Lower half of PORT1) 00H

P1H b FF06H 83H Port 1 High Register (Upper half of PORT1) 00H

BUSCON0 b FF0CH 86H Bus Configuration Register 0 0000H

MDC b FF0EH 87H CPU Multiply Divide Control Register 0000H

PSW b FF10H 88H CPU Program Status Word 0000H

SYSCON b FF12H 89H CPU System Configuration Register 0XX0H
1)

BUSCON1 b FF14H 8AH Bus Configuration Register 1 0000H

BUSCON2 b FF16H 8BH Bus Configuration Register 2 0000H

BUSCON3 b FF18H 8CH Bus Configuration Register 3 0000H

BUSCON4 b FF1AH 8DH Bus Configuration Register 4 0000H

ZEROS b FF1CH 8EH Constant Value 0’s Register (read only) 0000H

ONES b FF1EH 8FH Constant Value 1’s Register (read only) FFFFH

T2CON b FF40H A0H GPT1 Timer 2 Control Register 0000H

T3CON b FF42H A1H GPT1 Timer 3 Control Register 0000H

T4CON b FF44H A2H GPT1 Timer 4 Control Register 0000H

T5CON b FF46H A3H GPT2 Timer 5 Control Register 0000H

T6CON b FF48H A4H GPT2 Timer 6 Control Register 0000H

T2IC b FF60H B0H GPT1 Timer 2  Interrupt Control Register 0000H

T3IC b FF62H B1H GPT1 Timer 3 Interrupt Control Register 0000H

Name Physical
Address

8-Bit
Address

Description Reset
Value
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T4IC b FF64H B2H GPT1 Timer 4 Interrupt Control Register 0000H

T5IC b FF66H B3H GPT2 Timer 5 Interrupt Control Register 0000H

T6IC b FF68H B4H GPT2 Timer 6 Interrupt Control Register 0000H

CRIC b FF6AH B5H GPT2 CAPREL Interrupt Control Register 0000H

S0TIC b FF6CH B6H Serial Channel 0 Transmit Interrupt Control 
Register

0000H

S0RIC b FF6EH B7H Serial Channel 0 Receive Interrupt Control 
Register

0000H

S0EIC b FF70H B8H Serial Channel 0 Error Interrupt Control Register 0000H

SSCTIC b FF72H B9H SSC Transmit Interrupt Control Register 0000H

SSCRIC b FF74H BAH SSC Receive Interrupt Control Register 0000H

SSCEIC b FF76H BBH SSC Error Interrupt Control Register 0000H

CC8IC b FF88H C4H CAPCOM Register 8 Interrupt Control Register 0000H

CC9IC b FF8AH C5H CAPCOM Register 9 Interrupt Control Register 0000H

CC10IC b FF8CH C6H CAPCOM Register 10 Interrupt Control Register 0000H

CC11IC b FF8EH C7H CAPCOM Register 11 Interrupt Control Register 0000H

CC12IC b FF90H C8H External Interrupt 4 Control Register 0000H

CC13IC b FF92H C9H External Interrupt 5 Control Register 0000H

CC14IC b FF94H CAH External Interrupt 6 Control Register 0000H

CC15IC b FF96H CBH External Interrupt 7 Control Register 0000H

ADCIC b FF98H CCH A/D Converter End of Conversion Interrupt 
Control Register

0000H

ADEIC b FF9AH CDH A/D Converter Overrun Error Interrupt Control 
Register

0000H

ADCON b FFA0H D0H A/D Converter Control Register 0000H

P5 b FFA2H D1H Port 5 Register (read only) XXXXH

P5DIDIS b FFA4H D2H Port 5 Digital Input Disable Register 0000H

TFR b FFACH D6H Trap Flag Register 0000H

WDTCON b FFAEH D7H Watchdog Timer Control Register 00XXH
2)

S0CON b FFB0H D8H Serial Channel 0 Control Register 0000H

SSCCON b FFB2H D9H SSC Control Register 0000H

P2 b FFC0H E0H Port 2 Register 0000H

DP2 b FFC2H E1H Port 2 Direction Control Register 0000H

P3 b FFC4H E2H Port 3 Register 0000H

Name Physical
Address

8-Bit
Address

Description Reset
Value
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1) The system configuration is selected during reset.
2) The reset value depends on the indicated reset source.

DP3 b FFC6H E3H Port 3 Direction Control Register 0000H

P4 b FFC8H E4H Port 4 Register (8 bits) 00H

DP4 b FFCAH E5H Port 4 Direction Control Register 00H

P6 b FFCCH E6H Port 6 Register (8 bits) 00H

DP6 b FFCEH E7H Port 6 Direction Control Register 00H

Name Physical
Address

8-Bit
Address

Description Reset
Value
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21.5 Special Notes

PEC Pointer Registers

The source and destination pointers for the peripheral event controller are mapped to a special area
within the internal RAM. Pointers that are not occupied by the PEC may therefore be used like
normal RAM. During Power Down mode or any warm reset the PEC pointers are preserved.

The PEC and its registers are described in chapter “Interrupt and Trap Functions”.

GPR Access in the ESFR Area

The locations 00’F000H … 00’F01EH within the ESFR area are reserved and allow to access the
current register bank via short register addressing modes. The GPRs are mirrored to the ESFR area
which allows access to the current register bank even after switching register spaces (see example
below).

MOV R5, DP3 ;GPR access via SFR area
EXTR #1
MOV R5, ODP3 ;GPR access via ESFR area

Writing Bytes to SFRs

All special function registers may be accessed wordwise or bytewise (some of them even bitwise).
Reading bytes from word SFRs is a non-critical operation. However, when writing bytes to word
SFRs the complementary byte of the respective SFR is cleared with the write operation.
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22 Instruction Set Summary

This chapter briefly summarizes the C161RI’s instructions ordered by instruction classes. This
provides a basic understanding of the C161RI’s instruction set, the power and versatility of the
instructions and their general usage.  

A detailed description of each single instruction, including its operand data type, condition flag
settings, addressing modes, length (number of bytes) and object code format is provided in the
“Instruction Set Manual”  for the C166 Family. This manual also provides tables ordering the
instructions according to various criteria, to allow quick references.

Summary of Instruction Classes

Grouping the various instruction into classes aids in identifying similar instructions (e.g. SHR, ROR)
and variations of certain instructions (e.g. ADD, ADDB). This provides an easy access to the
possibilities and the power of the instructions of the C161RI.

Note: The used mnemonics refer to the detailed description.

Arithmetic Instructions

• Addition of two words or bytes: ADD ADDB
• Addition with Carry of two words or bytes: ADDC ADDCB
• Subtraction of two words or bytes: SUB SUBB
• Subtraction with Carry of two words or bytes: SUBC SUBCB
• 16*16 bit signed or unsigned multiplication: MUL MULU
• 16/16 bit signed or unsigned division: DIV DIVU
• 32/16 bit signed or unsigned division: DIVL DIVLU
• 1’s complement of a word or byte: CPL CPLB
• 2’s complement (negation) of a word or byte: NEG NEGB

Logical Instructions

• Bitwise ANDing of two words or bytes: AND ANDB
• Bitwise ORing of two words or bytes: OR ORB
• Bitwise XORing of two words or bytes: XOR XORB

Compare and Loop Control Instructions

• Comparison of two words or bytes: CMP CMPB
• Comparison of two words with post-increment

by either 1 or 2: CMPI1 CMPI2
• Comparison of two words with post-decrement

by either 1 or 2: CMPD1 CMPD2
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Boolean Bit Manipulation Instructions  

• Manipulation of a maskable bit field
in either the high or the low byte of a word: BFLDH BFLDL

• Setting a single bit (to ‘1’): BSET
• Clearing a single bit (to ‘0’): BCLR
• Movement of a single bit: BMOV
• Movement of a negated bit: BMOVN
• ANDing of two bits: BAND
• ORing of two bits: BOR
• XORing of two bits: BXOR
• Comparison of two bits: BCMP

Shift and Rotate Instructions

• Shifting right of a word: SHR
• Shifting left of a word: SHL
• Rotating right of a word: ROR
• Rotating left of a word: ROL
• Arithmetic shifting right of a word (sign bit shifting): ASHR

Prioritize Instruction

• Determination of the number of shift cycles required
to normalize a word operand (floating point support): PRIOR

Data Movement Instructions

• Standard data movement of a word or byte: MOV MOVB
• Data movement of a byte to a word location

with either sign or zero byte extension: MOVBS MOVBZ
Note: The data movement instructions can be used with a big number of different addressing

modes including indirect addressing and automatic pointer in-/decrementing.

System Stack Instructions

• Pushing of a word onto the system stack: PUSH
• Popping of a word from the system stack: POP
• Saving of a word on the system stack,

and then updating the old word with a new value
(provided for register bank switching): SCXT
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Jump Instructions

• Conditional jumping to an either absolutely,
indirectly, or relatively addressed target instruction
within the current code segment: JMPA JMPI JMPR

• Unconditional jumping to an absolutely addressed
target instruction within any code segment: JMPS

• Conditional jumping to a relatively addressed
target instruction within the current code segment
depending on the state of a selectable bit: JB JNB

• Conditional jumping to a relatively addressed
target instruction within the current code segment
depending on the state of a selectable bit
with a post-inversion of the tested bit
in case of jump taken (semaphore support): JBC JNBS

Call Instructions

• Conditional calling of an either absolutely
or indirectly addressed subroutine within
the current code segment: CALLA CALLI

• Unconditional calling of a relatively addressed
subroutine within the current code segment: CALLR

• Unconditional calling of an absolutely addressed
subroutine within any code segment: CALLS

• Unconditional calling of an absolutely addressed
subroutine within the current code segment plus
an additional pushing of a selectable register onto
the system stack: PCALL

• Unconditional branching to the interrupt or
trap vector jump table in code segment 0: TRAP

Return Instructions

• Returning from a subroutine
within the current code segment: RET

• Returning from a subroutine
within any code segment: RETS

• Returning from a subroutine within the current
code segment plus an additional popping of a
selectable register from the system stack: RETP

• Returning from an interrupt service routine: RETI
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System Control Instructions

• Resetting the C161RI via software: SRST
• Entering the Idle mode: IDLE
• Entering the Power Down mode: PWRDN
• Servicing the Watchdog Timer: SRVWDT
• Disabling the Watchdog Timer: DISWDT
• Signifying the end of the initialization routine

(pulls pin RSTOUT high, and disables the effect of
any later execution of a DISWDT instruction): EINIT

Miscellaneous

• Null operation which requires 2 bytes of
storage and the minimum time for execution: NOP

• Definition of an unseparable instruction sequence: ATOMIC
• Switch ‘reg’, ‘bitoff’ and ‘bitaddr’ addressing modes

to the Extended SFR space: EXTR
• Override the DPP addressing scheme

using a specific data page instead of the DPPs,
and optionally switch to ESFR space: EXTP EXTPR

• Override the DPP addressing scheme
using a specific segment instead of the DPPs,
and optionally switch to ESFR space: EXTS EXTSR

Note: The ATOMIC and EXT* instructions provide support for uninterruptable code sequences e.g.
for semaphore operations. They also support data addressing beyond the limits of the
current DPPs (except ATOMIC), which is advantageous for bigger memory models in high
level languages. Refer to chapter “System Programming” for examples.

Protected Instructions   

Some instructions of the C161RI which are critical for the functionality of the controller are
implemented as so-called Protected Instructions. These protected instructions use the maximum
instruction format of 32 bits for decoding, while the regular instructions only use a part of it (e.g. the
lower 8 bits) with the other bits providing additional information like involved registers. Decoding all
32 bits of a protected doubleword instruction increases the security in cases of data distortion during
instruction fetching. Critical operations like a software reset are therefore only executed if the
complete instruction is decoded without an error. This enhances the safety and reliability of a
microcontroller system.
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23 Device Specification

The device specification describes the electrical parameters of the device. It lists DC characteristics
like input, output or supply voltages or currents, and AC characteristics like timing characteristics
and requirements.

Other than the architecture, the instruction set or the basic functions of the C161RI core and its
peripherals, these DC and AC characteristics are subject to changes due to device improvements
or specific derivatives of the standard device.

Therefore these characteristics are not contained in this manual, but rather provided in a separate
Data Sheet, which can be updated more frequently.

Please refer to the current version of the Data Sheet of the respective device for all electrical
parameters.

Note: In any case the specific characteristics of a device should be verified, before a new design
is started. This ensures that the used information is up to date.

The figures below show the pin diagrams of the C161RI. They shows the location of the different
supply and IO pins. A detailed description of all the pins is also found in the Data Sheet.

Note: Not all alternate functions shown in the figure below are supported by all derivatives.
Please refer to the corresponding descriptions in the data sheets.
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Figure 23-1
Pin Description for C161RI, P-MQFP-100 Package
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Figure 23-2
Pin Description for C161RI, P-TQFP-100 Package
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24 Keyword Index

This section lists a number of keywords which refer to specific details of the C161RI in terms of its
architecture, its functional units or functions. This helps to quickly find the answer to specific
questions about the C161RI.
A
Acronyms  1-7
Adapt Mode  18-9
ADC  2-13,  16-1
ADCIC, ADEIC  16-6
ADCON  16-3
Address

Arbitration  9-23
Area Definition  9-22
Boundaries  3-11
Segment  9-8,  18-12

ADDRSELx  9-21,  9-23
ALE length  9-11
ALU  4-14
Analog/Digital Converter  2-13,  16-1
Arbitration

Address  9-23
ASC0  11-1

Asynchronous mode  11-4
Baudrate  11-10
Error Detection  11-10
Interrupts  11-12
Synchronous mode  11-8

Asynchronous Serial Interface (->ASC0)  11-1

B
Baudrate

ASC0  11-10
Bootstrap Loader  15-5
I2C Bus  17-8
SSC  12-10

BHE  7-19,  9-7
Bidirectional reset  18-3
Bit

addressable memory  3-5
Handling  4-9
Manipulation Instructions  22-2
protected  2-15,  4-9

Bootstrap Loader  15-1,  18-10
Boundaries  3-11

Bus
CAN  2-11
Demultiplexed  9-4
Idle State  9-25
Mode Configuration  9-2,  18-11
Multiplexed  9-3
Physical I²C  17-4

BUSCONx  9-19,  9-23

C
CAN Interface  2-11
Capture Mode

GPT1  10-17
GPT2 (CAPREL)  10-26

CCxIC  5-23
Chip Select

Configuration  9-8,  18-12
Latched/Early  9-9

Clock
distribution  6-1,  19-10
generator modes  6-5,  18-13

Concatenation of Timers  10-14,  10-25
Configuration

Address  9-8,  18-12
Bus Mode  9-2,  18-11
Chip Select  9-8,  18-12
PLL  6-5,  18-13
Reset  18-6
special modes  18-10
Write Control  18-11

Context Switching  5-15
Conversion

analog/digital  16-1
timing control  16-5

Count direction  10-4
Counter  10-7,  10-13,  10-24
CP  4-22
CPU  2-2,  4-1
CRIC  10-29
CSP  4-18
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D
Data Page  4-20,  20-13

boundaries  3-11
Delay

Read/Write  9-14
Demultiplexed Bus  9-4
Development Support  1-6
Direct Drive  6-4
Direction

count  10-4
Disable

Interrupt  5-13
Peripheral  19-11
Segmentation  4-13

Division  4-27,  20-1
DP0L, DP0H  7-6
DP1L, DP1H  7-9
DP2  7-12
DP3  7-15
DP4  7-20
DP6  7-26
DPP  4-20,  20-13

E
Early chip select  9-9
Emulation Mode  18-9
Enable

Interrupt  5-13
Peripheral  19-11
Segmentation  4-13

Error Detection
ASC0  11-10
SSC  12-12

EXICON  5-22
External

Bus  2-8
Bus Characteristics  9-10 to 9-16
Bus Idle State  9-25
Bus Modes  9-2 to 9-7
Fast interrupts  5-22
Interrupts  5-21

F
Fast external interrupts  5-22
Flags  4-14 to 4-16
Full Duplex  12-6

G
GPR  3-6,  4-22,  21-2
GPT  2-12
GPT1  10-1
GPT2  10-19

H
Half Duplex  12-8
Hardware

Reset  18-1
Traps  5-24

I
I²C Bus Module  17-1
ICADR  17-11
ICCFG  17-8
ICRTB  17-11
ICST  17-10
Idle

Mode  19-2
State (Bus)  9-25

Incremental Interface  10-8
Indication of reset source  13-4
Input threshold  7-3
Instruction  20-1,  22-1

Bit Manipulation  22-2
Branch  4-4
Pipeline  4-3
protected  22-4
Timing  4-10
unseparable  20-12

Interface
CAN  2-11
External Bus  9-1
I²C Bus  17-1
serial async. (->ASC0)  11-1
serial sync. (->SSC)  12-1

Internal RAM  3-4
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Interrupt
Enable/Disable  5-13
External  5-21
Fast external  5-22
Node Sharing  5-20
Priority  5-6
Processing  5-1,  5-5
Response Times  5-16
RTC  14-3
Sources  5-3
System  2-6,  5-2
Vectors  5-3

IP  4-17
IRAM  3-4
ISNC  5-20

L
Latched chip select  9-9

M
Management

Peripheral  19-10
Power  19-1

Master mode
I²C Bus  17-6

MDC  4-28
MDH  4-27
MDL  4-27
Memory  2-7

bit-addressable  3-5
Code memory handling  20-14
External  3-10
RAM/SFR  3-4
ROM  3-3
Tri-state time  9-13
XRAM  3-9

Memory Cycle Time  9-12
Multimaster mode

I²C Bus  17-6
Multiplexed Bus  9-3
Multiplication  4-27,  20-1

N
NMI  5-1,  5-26

O
ODP2  7-12

ODP3  7-15
ODP6  7-26
ONES  4-29
Open Drain Mode  7-2
Oscillator

circuitry  6-2
OTP

Handling  20-14

P
P0L, P0H  7-6
P1L, P1H  7-9
P2  7-12
P3  7-15
P4  7-20
P5  7-23
P5DIDIS  7-24
P6  7-26
PEC  2-7,  3-7,  5-10

Response Times  5-18
PECCx  5-10
Peripheral

Enable/Disable  19-11
Management  19-10
Summary  2-9

PICON  7-3
Pins  8-1,  23-2,  23-3

in Idle and Power Down mode  19-5
Pipeline  4-3

Effects  4-6
PLL  18-13
Port  2-10

input threshold  7-3
Power Down Mode  19-4
Power Management  2-14,  19-1
Prescaler  6-4
Protected

Bits  2-15,  4-9
instruction  22-4

PSW  4-14,  5-8

R
RAM

extension  3-9
internal  3-4

Read/Write Delay  9-14
READY  9-15
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Real Time Clock (->RTC)  14-1
Registers  21-1

sorted by address  21-9
sorted by name  21-4

Reset  10-11,  18-1
Bidirectional  18-3
Configuration  18-6
Output  18-5
Source indication  13-4
Values  18-5

ROM
Handling  20-14

RP0H  9-24
RTC  2-13,  14-1

S
S0BG  11-10
S0CON  11-2
S0EIC, S0RIC, S0TIC, S0TBIC  11-12
S0RBUF  11-7,  11-9
S0TBUF  11-6,  11-9
Security Mechanism  19-12
Segment

Address  9-8,  18-12
boundaries  3-11

Segmentation  4-18
Enable/Disable  4-13

Serial Interface  2-11,  11-1
Asynchronous  11-4
CAN  2-11
Synchronous  11-8,  12-1

SFR  3-8,  21-4,  21-9
Single Chip Mode  9-2
Slave mode

I²C Bus  17-7
Slow Down Mode  19-7
Software

Reset  18-1
Traps  5-24

Source
Interrupt  5-3
Reset  13-4

SP  4-24
Special operation modes (config.)  18-10

SSC  12-1
Baudrate generation  12-10
Error Detection  12-12
Full Duplex  12-6
Half Duplex  12-8

SSCBR  12-10
SSCCON  12-2
SSCEIC, SSCRIC, SSCTIC  12-14
SSCRB, SSCTB  12-7
Stack  3-5,  4-24,  20-4
Startup Configuration  18-6
STKOV  4-25
STKUN  4-26
Subroutine  20-9
Synchronous Serial Interface (->SSC)  12-1
SYSCON  4-11,  9-17
SYSCON2  19-8
SYSCON3  19-11

T
T2CON  10-11
T2IC, T3IC, T4IC  10-18
T3CON  10-3
T4CON  10-11
T5CON  10-23
T5IC, T6IC  10-29
T6CON  10-21
TFR  5-25
Threshold  7-3
Timer  2-12,  10-1,  10-19

Auxiliary Timer  10-11,  10-23
Concatenation  10-14,  10-25
Core Timer  10-3,  10-21

Tools  1-6
Traps  5-4,  5-24
Tri-State Time  9-13

U
Unlock Sequence  19-12
Unseparable instructions  20-12

W
Waitstate

Memory Cycle  9-12
Tri-State  9-13

Watchdog  2-12,  13-1,  18-5
WDT  13-1
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WDTCON  13-2

X
XBUS  2-8,  9-26
XP0IC  17-12
XP1IC  17-12
XRAM on-chip  3-9

Z
ZEROS  4-29
Semiconductor Group 24-5 1998-05-01


	1 Introduction
	1.1 The Members of the 16-bit Microcontroller Fami...
	1.2 Summary of Basic Features
	1.3 Abbreviations

	2 Architectural Overview
	2.1 Basic CPU Concepts and Optimizations
	High Instruction Bandwidth / Fast Execution
	Programmable Multiple Priority Interrupt System

	2.2 The On-chip System Resources
	2.3 The On-chip Peripheral Blocks
	2.4 Power Management Features
	2.5 Protected Bits

	3 Memory Organization
	3.1 Internal ROM
	3.2 Internal RAM and SFR Area
	3.3 The On-Chip XRAM
	3.4 External Memory Space
	3.5 Crossing Memory Boundaries

	4 The Central Processing Unit (CPU)
	4.1 Instruction Pipelining
	Particular Pipeline Effects

	4.2 Bit-Handling and Bit-Protection
	4.3 Instruction State Times
	4.4 CPU Special Function Registers

	5 Interrupt and Trap Functions
	5.1 Interrupt System Structure
	Interrupt Control Registers

	5.2 Operation of the PEC Channels
	5.3 Prioritization of Interrupt and PEC Service Re...
	5.4 Saving the Status during Interrupt Service
	5.5 Interrupt Response Times
	PEC Response Times
	Interrupt Node Sharing

	5.6 External Interrupts
	5.7 Trap Functions

	6 Clock Generation
	6.1 Oscillator
	6.2 Frequency Control
	6.3 Clock Drivers

	7 Parallel Ports
	7.1 PORT0
	Alternate Functions of PORT0

	7.2 PORT1
	Alternate Functions of PORT1

	7.3 Port 2
	Alternate Functions of Port 2

	7.4 Port 3
	Alternate Functions of Port 3

	7.5 Port 4
	Alternate Functions of Port 4

	7.6 Port 5
	Alternate Functions of Port 5

	7.7 Port 6
	Alternate Functions of Port 6


	8 Dedicated Pins
	9 The External Bus Interface
	9.1 External Bus Modes
	9.2 Programmable Bus Characteristics
	9.3 READY Controlled Bus Cycles
	9.4 Controlling the External Bus Controller
	9.5 EBC Idle State
	9.6 The XBUS Interface

	10 The General Purpose Timer Units
	10.1 Timer Block GPT1
	GPT1 Core Timer T3
	GPT1 Auxiliary Timers T2 and T4
	Interrupt Control for GPT1 Timers

	10.2 Timer Block GPT2
	GPT2 Core Timer T6
	GPT2 Auxiliary Timer T5
	Interrupt Control for GPT2 Timers and CAPREL


	11 The Asynchronous/Synchronous Serial Interface
	11.1 Asynchronous Operation
	11.2 Synchronous Operation
	11.3 Hardware Error Detection Capabilities
	11.4 ASC0 Baud Rate Generation
	11.5 ASC0 Interrupt Control

	12 The High-Speed Synchronous Serial Interface
	12.1 Full-Duplex Operation
	12.2 Half Duplex Operation
	12.3 Baud Rate Generation
	12.4 Error Detection Mechanisms
	12.5 SSC Interrupt Control

	13 The Watchdog Timer (WDT)
	13.1 Operation of the Watchdog Timer
	13.2 Reset Source Indication

	14 The Real Time Clock
	14.1 RTC Interrupt Generation

	15 The Bootstrap Loader
	16 The Analog / Digital Converter
	16.1 Mode Selection and Operation
	16.2 Conversion Timing Control
	16.3 A/D Converter Interrupt Control

	17 The I2C�Bus Module
	17.1 I2C�Bus Conditions
	17.2 The Physical I2C�Bus Interface
	17.3 Operating the I2C Bus
	Operation in Master Mode
	Operation in Multimaster Mode
	Operation in Slave Mode

	17.4 I2C Interrupt Control
	17.5 Programming Example

	18 System Reset
	18.1 System Startup Configuration

	19 Power Management
	19.1 Idle Mode
	19.2 Power Down Mode
	Status of Output Pins during Power Reduction Modes...

	19.3 Slow Down Operation
	19.4 Flexible Peripheral Management

	20 System Programming
	20.1 Stack Operations
	20.2 Register Banking
	20.3 Procedure Call Entry and Exit
	20.4 Table Searching
	20.5 Peripheral Control and Interface
	20.6 Floating Point Support
	20.7 Trap/Interrupt Entry and Exit
	20.8 Unseparable Instruction Sequences
	20.9 Overriding the DPP Addressing Mechanism
	20.10 Handling the Internal Code Memory
	20.11 Pits, Traps and Mines

	21 The Register Set
	21.1 Register Description Format
	21.2 CPU General Purpose Registers (GPRs)
	21.3 Special Function Registers ordered by Name
	21.4 Registers ordered by Address
	21.5 Special Notes

	22 Instruction Set Summary
	23 Device Specification
	24 Keyword Index

